P1002 [NOIP2002 普及组] 过河卒

该问题是一个典型的二维网格路径计数问题,涉及到动态规划。给定一个棋盘,卒从A点开始走向B点,马位于C点,卒只能向下或向右移动,马的控制点不能被卒经过。程序通过构建DP矩阵并标记马的控制点,计算卒到达B点的路径总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

棋盘上 A 点有一个过河卒,需要走到目标 B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A 点 (0,0)(0,0)、B 点(n,m),同样马的位置坐标是需要给出的。

现在要求你计算出卒从 A 点能够到达 B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入格式

一行四个正整数,分别表示 B 点坐标和马的坐标。

输出格式

一个整数,表示所有的路径条数。

输入输出样例

输入 #1复制

6 6 3 3

输出 #1复制

6

说明/提示

对于 100%100% 的数据,1≤n,m≤201≤n,m≤20,0≤0≤ 马的坐标 ≤20≤20。

废话不说,上答案:

#include<cstdio>

const int Const[2][9]={{0,-2,-1,1,2,2,1,-1,-2},{0,1,2,2,1,-1,-2,-2,-1}};
long long DP[21][21]={1};
bool mark[21][21];

int main()
{
    int nx,ny,hx,hy;
    scanf("%d%d%d%d",&nx,&ny,&hx,&hy);
    for(int i=0;i<9;++i)
        if(hx+Const[0][i]>=0&&hx+Const[0][i]<=nx&&hy+Const[1][i]>=0&&hy+Const[1][i]<=ny)
            mark[hx+Const[0][i]][hy+Const[1][i]]=1;
    for(int i=0;i<=nx;++i)
        for(int j=0;j<=ny;++j)
        {
            if(i) DP[i][j]+=DP[i-1][j];
            if(j) DP[i][j]+=DP[i][j-1];
            DP[i][j]*=!mark[i][j];
        }

    printf("%lld",DP[nx][ny]);
    return 0;
}

 

好了,886~

本文章由python_ok所有.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值