# 搭建本地大模型和知识库最简单的方法

01、本地大模型越来越简单

经过了一年多时间的迭代,大模型种类繁多,使用也越来越简单了。

在本地跑大模型,个人认为目前最好的软件肯定是Ollama无疑了,

不管你是在PC上跑大模型,在Mac上跑大模型,还有在树莓派上跑大模型,

我们都可以用Ollama去跑各种大大小小的模型,而且它的扩展性非常强。

02、Ollama本地运行大模型

现在安装Ollama超级简单的,只需要进入Ollama官网下载安装包,然后安装即可。

以下是我个人安装为例(macOS系统):

  • 1、下载

图片

  • 2、安装

图片

直接点击Next:

图片

  • 3、命令查看

图片

  • 4、运行

图片

  • 其他说明

如果自己不确定模型名称可以去官网查看模型

图片

每款大模型都有不同版本,根据自己的机器来选择,根据官网的文档也说明了,一般7B的模型至少需要8G的内存,13B的模型至少需要16G内存,70B的模型至少需要64G内存。

图片

03、使用Web UI界面连接Ollama

ollama没有界面化的页面使用,它是在终端里交互的,所有我们要使用图形化的界面里去操作,这是我们可以使用Open WebUI。

Open WebUI是一个开源的Web UI界面,github地址:https://github.com/open-webui/open-webui

  • 1、下载和运行

使用Docker方式运行Open WebUI,直接一条命令解决下载和运行:

图片

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

命令解释:

  • -d:后台运行
  • -p 3000:8080:将容器的8080端口映射到主机的3000端口
  • --add-host=host.docker.internal:host-gateway:添加主机映射,用于访问主机的Docker容器
  • -v open-webui:/app/backend/data:将主机的open-webui目录映射到容器的/app/backend/data目录
  • --name open-webui:设置容器名称
  • --restart always:设置容器总是重启
  • ghcr.io/open-webui/open-webui:main:镜像地址

启动日志:

图片

注意:open-webui启动时有点慢,需要等待一会。可以通过docker logs open-webui查看日志。红框的可以不用理会。

  • 2、注册

第一次使用时需要进行注册,这个数据都是本地存储。

图片

  • 3、登录

图片

  • 4、open-webui使用界面

图片

  • 4、设置

图片

  • 5、模型选择

图片

04、本地化知识库

1、open-webui界面文档设置

图片

2、加载网页或者文档

在对话窗口通过#+链接加载网页,通过对话框的+上传文件,也可以在文档中导入。

图片

如果对知识库有更高的需求,可以使用AnythingLLM这个软件,github地址:https://github.com/Mintplex-Labs/anything-llm

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值