RAG 实践-Ollama+AnythingLLM 搭建本地知识库

什么是 RAG

RAG,即检索增强生成(Retrieval-Augmented Generation),是一种先进的自然语言处理技术架构,它旨在克服传统大型语言模型(LLMs)在处理开放域问题时的信息容量限制和时效性不足。RAG的核心机制融合了信息检索系统的精确性和语言模型的强大生成能力,为基于自然语言的任务提供了更为灵活和精准的解决方案。

RAG与LLM的关系

RAG不是对LLM的替代,而是对其能力的扩展与升级。传统LLM受限于训练数据的边界,对于未见信息或快速变化的知识难以有效处理。RAG通过动态接入外部资源,使LLM得以即时访问和利用广泛且不断更新的知识库,进而提升模型在问答、对话、文本生成等任务中的表现。此外,RAG框架强调了模型的灵活性和适应性,允许开发者针对不同应用场景定制知识库,从而满足特定领域的需求。

下图是 RAG 的一个大致流程:

RAG就像是为大型语言模型(LLM)配备了一个即时查询的“超级知识库”。这个“外挂”不仅扩大了模型的知识覆盖范围,还提高了其回答特定领域问题的准确性和时效性。

想象一下,传统的LLM像是一个博学多才但记忆力有限的学者,它依赖于训练时吸收的信息来回答问题。而RAG,则是这位学者随时可以连线的庞大图书馆和实时资讯网络。当面临复杂或最新的查询时,RAG能让模型即时搜索并引用这些外部资源,就像学者翻阅最新的研究资料或在线数据库一样,从而提供更加精准、全面和最新的答案。这种设计尤其适用于需要高度专业化或快速更新信息的场景,比如医学咨询、法律意见、新闻摘要等。

基于此,RAG 技术特别适合用来做个人或企业的本地知识库应用,利用现有知识库资料结合 LLM 的能力,针对特定领域知识的问题能够提供自然语言对话交互,且答案比单纯用 LLM 准确性要高得多。

实践

现成方案

现成的方案有很多

本文将采用 Ollama + Qwen2.5 +AnythingLLM 来实现本地知识库

Ollama 大法

Ollama 与 LLM 的关系可以这样理解:Ollama 本身不是 LLM,而是一个服务于 LLM 的工具。它提供了一个平台和环境,使得开发者和研究人员能够在本地机器上轻松地运行、测试和部署各种大型语言模型

github:github.com/ollama/olla…

下载安装 Ollama 和大模型

下载地址:www.ollama.com/download ,支持 Windows、Mac、Linux。

当然你也可能用 Docker 安装镜像,官方镜像 hub.docker.com/r/ollama/ol…更多细节请参考 github 的 Readme:github.com/ollama/olla…

当你运行 ollama --version 命令成功查询到版本时,表示 Ollama 的安装已经顺利完成。

接下来便可以用 pull 命令从在线模型库下载模型,比如:

bash
复制代码
ollama pull llama2

还有更简单的方法直接使用 run 命令,它会在 运行之前自动检查模型是否下载,如果没有会自动下载

bash
复制代码
ollama run llama3

但是我想搭建的是本地知识库,当然是以中文为主,所以需要对中文支持最好的模型,但是:

Ollama官方提供的模型,对中文支持好的不多,比较好的有:

  • Llama2-Chinese:基于Llama2微调。搜“Chinese”关键词就能找到。
  • Qwen 1.5:阿里的通义千问。一共有6个尺寸,默认是4b。所有尺寸的模型都支持32K的上下文长度。多语言支持。

本想用 智谱的 GLM( huggingface.co/THUDM/chatg… ),奈何不兼容 Ollama,也没有 GGUF 格式文件,于是作罢。巧的是阿里的 通义Qwen2模型刚刚开源,正好可以试一下。

阿里开源了通义Qwen2模型,可以说是现阶段这个规模最强的开源模型。发布后直接在 Huggingface LLM 开源模型榜单获得第一名,超过了刚发布的 Llama3 和一众开源模型。Qwen2在代表推理能力的代码和数学以及长文本表现尤其突出。推理相关测试及大海捞针测试都取得了很好的成绩。

模型概览:Qwen 2 模型组成包括 Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B和Qwen2-72B。其中Qwen2-57B-A14B为 MoE 模型。

模型在中文、英文语料基础上,训练数据中增加了27种语言相关的高质量数据;增大了上下文长度支持,最高达到128K tokens(Qwen2-72B-Instruct)。多个评测基准上的领先表现;代码和数学能力显著提升。

顺序介绍一下中文大模型,可能通过这个仓库了解:github.com/HqWu-HITCS/…

安装并运行 Qwen2 模型,注意这里由于我笔记本配置问题,所以选用的是 7B 参数的模型

bash
复制代码
ollama run qwen2:7b

模型下载的默认路径是:/Users/${home}/.ollama/models

以下是我机器的配置,mac intel芯片

安装完成后就可以对话了:

open web UI

通过命令行交互的方式不算太友好,所以我们需要一个好看好用的 UI 界面来与模型进行交互。

Open Web UI 就是这样一个软件 github.com/open-webui/… ,它通过Docker 可以非常容易的进行部署

部署完成后,这样使用是不是就友好多了?

但由于我们是要搭建一个个人本地知识库,需要对知识库有更多的掌控,Open Web UI 有些不满足需要,所以我们要用另一个软件。

AnythingLLM

我们先下载安装 AnythingLLM :useanything.com/download

完成安装后大概长这个样子:

然后我们就要开始选择模型了

这里注意,我们要用服务器模式启动 Ollama,Ollama其实有两种模式:

  1. 聊天模式
  2. 服务器模式

所谓服务器模式,你可以简单理解为,Ollama在后端运行大模型,然后开放一个端口给到别的软件,让那些软件可以调用大模型的能力。要开启服务器模式非常简单。在终端里输入:ollama serve

用服务器模式启动 Ollama 后:

  • 在AnythingLLM界面中选择 Ollama
  • 然后在 Base URL中填:http://127.0.0.1:11434
  • 模型选择之前下载的 Qwen2.5 7b
  • Token context window 可以先用默认的 4096

完成以上设置后来到下一步

搭建一个知识库,会涉及到另外两个关键:

  1. Embedding Model,嵌入模型。它负责把高维度的数据转化为低维度的嵌入空间。这个数据处理过程在RAG中非常重要。
  2. Vector Store,向量数据库,专门用来高效处理大规模向量数据。

上图中就是默认的嵌入模型以及向量数据库,我们先使用默认的。

  • 然后往下走,下一步是填写个人信息,这步我就省略了。
  • 再下一步是给你的 workspace 起名,我也省略

接着你就可以在建好的 workspace 中上传你的个人知识库的内容了

你可以上传文件(支持多种格式 pdf word…),甚至是一个外部的网站链接,不太好的是它不能上传一个文件夹,如果你的文件夹是包含多级目录的,那么它无法识别,你需要把所有文件平铺放在同一级目录中再全选上传。

数据源也可以是其他知识网站:

你可以根据项目来创建Workspace,一个项目建一个。然后,把关于这个项目的所有文档、所有网页都导入Workspace。 聊天模式还有两种可以设置:

  1. 对话模式:大模型会根据你给的文档,以及它本来就有的知识储备,综合起来回答。
  2. 查询模式:大模型只是简单地针对文档进行回答。

比如我随便上传了一个 《劳动合同法》 的 pdf 文件,用查询模式进行对话:

虽然不太对,但内容是从我上传的文件里找到的,还可以点击查看源文件。

我将笔记本中的很多计算机相关的 markdown 文件作为“知识” 上传后,进行问答:

至此,我的本地个人知识库就搭建完成了!

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

### 使用Qwen构建本地知识库 为了使用Qwen创建和管理本地知识库,需遵循一系列配置流程来确保环境设置正确并能高效运行。当基于LangChain-Chatchat、Ollama以及Qwen2-7b搭建本地私有中文知识库时,在Ubuntu环境下操作可以完全依赖于CPU资源完成部署工作[^1]。 #### 创建项目文件夹与初始化Chatchat 首先建立一个新的目录用于存放所有相关数据,并进入此目录内通过执行`chatchat init`命令来进行必要的初始化动作。这一步骤会准备所需的初始结构以便后续能够顺利集成其他组件。 ```bash mkdir my_knowledge_base && cd $_ chatchat init ``` #### 安装Python库 为保障系统的稳定性和兼容性,推荐更新至最新的Python包版本。可以通过Pypi官方源或者清华大学镜像站获取这些软件包,从而加快下载速度并提高安装成功率。对于国内用户来说,选择后者通常更为便捷有效。 ```bash pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple/ pip install langchain chatchat ollama qwen -i https://pypi.tuna.tsinghua.edu.cn/simple/ ``` #### 配置Qwen模型参数 针对Qwen的具体应用情况调整相应的超参数设定非常重要。考虑到性能优化方面的需求,尤其是在仅有CPU支持的情况下,合理规划batch size、sequence length等关键属性有助于提升整体效率而不至于过度消耗计算资源。 #### 加载预训练模型 利用已有的Qwen2-7b权重文件加载预先训练好的语言模型实例。这一过程涉及指定路径指向存储位置,并调用适当API接口实现无缝对接。具体方法取决于所选用框架所提供的功能特性。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "path_to_qwen_2_7b" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` #### 构建索引机制 为了让查询请求更快速地返回匹配项,有必要建立起一套高效的检索体系。这里可能涉及到倒排列表、TF-IDF加权策略或是更加复杂的向量空间模型的选择。根据实际应用场景的不同做出最合适的决定至关重要。 #### 测试与验证 最后但同样重要的是进行全面的功能测试以确认整个架构能否正常运作。输入多样化的样本集作为检验材料,观察输出结果是否符合预期目标;同时也要关注响应时间指标,确保用户体验达到满意水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值