一款名为Vary-toy的“年轻人的第一个多模态大模型”来了!
模型大小不到2B,消费级显卡可训练,GTX1080ti 8G的老显卡轻松运行。
想将一份文档图片转换成Markdown格式?以往需要文本识别、布局检测和排序、公式表格处理、文本清洗等多个步骤。
现在只需一句话命令:
无论中英文,图片中的大段文字都能分分钟提取出来:
对一张图做对象检测,还是能给出具体坐标的那种:
这项研究由来自旷视、国科大、华中大的研究人员共同提出。
据介绍,Vary-toy虽小,但却几乎涵盖了目前LVLM(大型视觉语言模型)主流研究中的所有能力:文档OCR识别(Document OCR)、视觉定位(Visual Grounding)、图像描述(Image Caption)、视觉问答(VQA)。
现在,Vary-toy代码和模型均已开源,并有在线demo可试玩。
网友一边表示感兴趣,一边关注点在于旧·GTX1080,心情belike:
“缩小版”Vary
其实,早在去年12月Vary团队就发布了Vary的首项研究成果“Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models”。
研究人员指出CLIP视觉词表在密集感知能力上的不足,并用一种简单有效的扩充词表方案给出了一种全新的OCR范式。
Vary发布后得到广泛关注,目前Github1.2k+ star,但也有不少人因为资源受限运行不了。
考虑到目前开源得很好且性能出色的“小”VLM比较少,于是该团队又新发布了号称是“年轻人的第一个多模大模型”的Vary-toy。
与Vary相比,Vary-toy除了小之外,也训练了更强的视觉词表,新的词表不再将模型局限于文档级OCR,而是给出了一个更加通用和全面的视觉词表,其不仅能做文档级OCR,还能做通用视觉目标检测。
那这究竟是如何做到的?
Vary-toy的模型结构和训练流程如下图所示,总的来说,训练共分两个阶段。
首先在第一阶段,使用Vary-tiny+结构,预训练出一个相比原版Vary更好的视觉词表,新的视觉词表解决了原Vary只用它做文档级OCR的网络容量浪费问题、以及没有充分利用到SAM预训练优势的问题。
然后在第二阶段中,将第一阶段中训好的视觉词表merge到最终结构进行multi-task training/SFT。
众所周知,一个好的数据配比对于产生一个能力全面的VLM是至关重要的。
因此在预训练阶段,Vary-toy使用了5种任务类型的数据构建对话,数据配比和示例prompt如下图所示:
而在SFT阶段,只使用了LLaVA-80K数据。更多的技术细节,可以查看Vary-toy的技术报告。
实验测试结果
Vary-toy在DocVQA、ChartQA、RefCOCO、MMVet四个基准测试的得分如下:
Vary-toy在DocVQA上可以达到 65.6%的ANLS,在ChartQA上达到59.1%的准确率,RefCOCO88.1%的准确率:
MMVet上可以达到29%准确率,无论是从基准测试评分上还是可视化效果上,不到2B的Vary-toy甚至能和一些流行的7B模型的性能一较高下。
项目链接:
[1]https://arxiv.org/abs/2401.12503
[3]https://varytoy.github.io/
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。