前言
人工智能(AI)不再只是科幻电影中的桥段,而是正以前所未有的速度改变着我们的世界。随着大规模语言模型(LLM)系列的崛起,结合高度智能的(Agent)与精心设计的(Prompt),AI 技术正步入一个全新的进阶实战阶段。
本文将带您深入探索这一前沿领域,揭秘如何运用 LLM 大模型、智能体 Agent 与提示词 Prompt,共同编织出未来智能生态的宏伟蓝图。
【打造一款带记忆功能的AI智能通用问答产品】
No.1 实操环境准备
PyCharm 编辑器+Python 编程神器 Jupyter Notebook(可以在线调试-便捷)
FastAPI(极简、快速、高性能Web框架)+redis(数据缓存、存储服务)
pip install fastapi uvicorn openai redis
设置如上-会话存储的 hash 结构:具体的 value 即回答的 N 条真实记录(可结合实际会话ID进行关联),到这里准备工作就已经完成了。
No.2 项目工程搭建
建立 Python Project:这里 LLM 采用 KIMI(moonshot):
模型版本选择(moonshot-v1-32k)+ 精妙提示词(prompt)设定(高质量的提示词可以帮助模型理解人类的目标,换言之人类直接向模型提出命令或一条通向目标的推理路径。设计一个更有效的交互策略,使得模型生成的内容能符合人的意图和需求)
输入如下命令,启动开发服务器并在代码变更时自动重新加载。
uvicorn main:app --reload --host 127.0.0.1 --port 8888
这样,就能够提供对外的 API 接口出来了,接口调用效果如下:
当然,我们也可以使用 Restlet Client 进行 Rest API Testing:
No.3 智能问答调试
这里,我们给定一些日常话题来看看咨询效果:
因为在之前调试的时候,有些问题已经有了记忆属性,但还是能够看出 AI 可以精准理解我们的输入意图。
对应在 Jupyter Notebook 中的回答效果如下:
看到这里,想必大家对线上众多智能体产品使用体验,不再感觉很神秘了吧。
我们来将提问 结合语义、语境升华 一下:
接下来,以一个真实案例嵌入:多语-国际化,这里选择一个在多语言环境存在不一样词性的词。
输入请帮我用中文繁体翻译下这段话:
即将发布一个带有新发型妆造的广告
对应 Jupyter Notebook 回答:可以看出对“发”这个词依旧准确地给出了答案。
诚然,Encoder-Decoder的过程:从信息的压缩与抽象->信息的还原与创造。
Encoder 它能够将图像、文本等复杂数据转换成高维向量空间中的特征表示,这些特征既保留了原始数据的核心信息,又便于后续的模型处理与理解。
Decoder 它负责将 Encoder 处理后的数据还原回人类可理解的形式,无论是文字、图像还是声音,并且它还能在解码过程中融入创造力,通过生成对抗网络(GANs)等先进技术,生成全新的、逼真的内容,如高清图像、逼真语音等。
Encoder-Decoder 架构,这一架构在机器翻译、语音识别、图像生成等众多领域展现出了惊人的能力。以机器翻译为例,输入源语言的句子经过 Encoder 编码成一系列向量,再由 Decoder 解码成目标语言的句子,整个过程流畅自然,几乎达到了人类翻译的水平。
在自动驾驶领域,Encoder-Decoder 架构也被广泛应用于环境感知与决策制定。车辆通过摄像头、雷达等传感器收集到的海量数据,经过 Encoder 处理后提取关键信息,再由 Decoder 转化为车辆的控制指令,实现安全高效的自动驾驶。
Ok,now,那我们来继续检测一下上下文联想效果:看看之前咨询的问题,在其背后是如何经过决策并将答案呈现至用户眼前的?
温馨提示:上述case经过多次调试-调优过程,对背后技术实现原理感兴趣的可后台私信一起探讨><
【末尾彩蛋】
task1:采用 RAG(Retrieval-Augmented Generation)理念。
我们首先将历史对话记录整合进知识库。接着,通过嵌入技术(embedding)处理
这些记录,并将它们存储于向量数据库(vector store)中。
在接收到查询(query)时,系统会执行搜索匹配,筛选出与查询最相关的文本片段。
这些文本片段随后将与查询一同提交给大型语言模型(LLM),以生成回答。
task2:保持对话连贯性、最新信息的实时性。
此外,系统会分阶段对对话进行汇总,但最近N条记录将保持独立,不进行汇总,
直接用于 LLM 的回答过程中。这样的设计旨在保持对话的连贯性,同时确保最新信息的实时性。
动推荐
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
】

一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。