为什么说“又”呢?因为前面已经分享过一个可视化工具了,与那个工具相比,今天分享的Transformer Explainer更直观、交互性更强。
在线地址:https://poloclub.github.io/transformer-explainer/
源码:https://github.com/poloclub/transformer-explainer
论文:https://arxiv.org/pdf/2408.04619
为什么人们热衷于可视化Transformer?
一是因为它太重要了,现如今几乎所有的大模型都是以Transformer为基础,而且不光是在NLP领域,在CV中也开始崭露头角。
二是因为它的结构比较复杂,传统的模型构成比较单一,多由重复的卷积层或者MLP层构成,而Transformer则是由Encoder或者Decoder组成,每个der又由多个Block级联而成,每个Block又包括Embedding、自注意力、多头注意力、交叉注意力、层归一化、残差链接、MLP或者MoE层。
通过可视化技术不仅可以清晰了解模型构成,还可以直观可视化数据流经过程,这对于理解Transformer至关重要。
直观性
直观性不仅体现在能够直观描述模型整体架构,还要能把模型中的细节都体现出来,例如,鼠标悬停后都会显示该节点的数据维度信息。
Transformer主要由三部分构成:
1.Embedding
2.Transformer Block
Attention Mechanism
MLP (Multilayer Perceptron) Layer
3.Output Probabilities
1.Embedding
鼠标点击Embedding就可展示详细过程。
对于输入“Data visualization empowers users to”,Embedding层经过(1) Tokenization, (2) Token Embedding, (3) Positional Encoding生成最终的(4) Final Embedding。
2.Transformer Block
Multi-Head Self-Attention
Step 1: Query, Key, and Value Matrices
鼠标悬停到蓝色区域弹出动画展示QKV计算过程。
Step 2: Masked Self-Attention
鼠标点击紫色圆点弹出动画展示自注意力分数矩阵计算过程。
Step 3: Output
MLP: Multi-Layer Perceptron
MLP针对注意力层输出的特征进行非线性变换,进一步丰富和加工特征表示,以增强模型的表达能力。
3.Output Probabilities
输出层会为词表中的每一个token赋一个概率值。
交互性
除了上面鼠标交互外,还可以输入自己的文本,也可以更改temperature值。
Transformer Explainer是如何实现的?
Transformer Explainer在浏览器中直接运行一个实时的GPT-2(小型)模型。该模型源自Andrej Karpathy的nanoGPT项目的PyTorch实现,并已转换为ONNX Runtime,以实现无缝的浏览器内执行。界面使用JavaScript构建,前端框架为Svelte,动态可视化由D3.js创建。数值会根据用户输入实时更新。
Transformer Explainer是谁开发的?
Transformer Explainer由佐治亚理工学院的Aeree Cho、Grace C. Kim、Alexander Karpekov、Alec Helbling、Jay Wang、Seongmin Lee、Benjamin Hoover和Polo Chau开发。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
】
