基于Pytorch的MINIST数据集soft target的知识蒸馏代码实验

知识蒸馏:教师学生模型,通过软目标实现从教师到学生模型的知识传递

在这里插入图片描述

单独训练教师模型

教师模型采用三个全连接层,隐藏层的神经元为1200–>2400–>1200,为防止过拟合,加入Dropout
模型训练采用交叉熵损失,Adam优化器,学习率为1e-4,训练批次epoch=10,batch-size=64
import torch
from torch import nn
from tqdm import tqdm
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader


class TeacherModel(nn.Module):
    def __init__(self, in_channel=1, num_classes=10):
        super(TeacherModel, self).__init__()
        self.relu = nn.ReLU()
        self.fc1 = nn.Linear(784, 1200)
        self.fc2 = nn.Linear(1200, 2400)
        self.fc3 = nn.Linear(2400, 1200)
        self.fc4 = nn.Linear(1200, num_classes)
        self.dropout = nn.Dropout(p=0.5)

    def forward(self, x):
        x = x.view(-1, 784)
        x = self.fc1(x)
        x = self.dropout(x)
        x = self.relu(x)

        x = self.fc2(x)
        x = self.dropout(x)
        x = self.relu(x)

        x = self.fc3(x)
        x = self.dropout(x)
        x = self.relu(x)

        x = self.fc4(x)

        return x 
    

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


#load MNIST datasets
train_dataset = torchvision.datasets.MNIST(
    root = "./dataset/",
    train=True,
    transform=transforms.ToTensor(),
    download=True
)
test_dataset = torchvision.datasets.MNIST(
    root = "./dataset/",
    train = False,
    transform=transforms.ToTensor(),
    download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)

if __name__ == "__main__":

    """
    从头训练教师模型
    """
    model = TeacherModel().to(device)


    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
    epochs = 10

    for epoch in range(epochs):
        model.train()
        for data, targets in tqdm(train_loader):
            data = data.to(device)
            targets = targets.to(device)
            prediction = model(data)
            loss = criterion(prediction, targets)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        model.eval()
        num_correct = 0
        num_samples = 0

        with torch.no_grad():
            for x, y in test_loader:
                x = x.to(device)
                y = y.to(device)

                prediction = model(x)
                prediction = prediction.max(1).indices
                num_correct += (prediction == y).sum()
                num_samples += prediction.size(0)
            
            acc = (num_correct/num_samples).item()
        
        model.train()
        print("Epoch:{}\t Accuracy:{:.4f}".format(epoch, acc))
        torch.save(model.state_dict(), './weights/teacher/teacher_{}.pth'.format(acc))

    """
    教师模型
    Epoch:8  Accuracy:0.9831
    """

在这里插入图片描述

经过10个epoch训练,教师模型的精度为 Accuracy:0.9831

单独训练学生模型

学生模型采用3层全连接层,隐藏层的神经元为20–>20–>20,不需要Dropout
学生模型的训练设置与教师模型完全保持一致
import torch
from torch import nn
from tqdm import tqdm
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader

class StudentModel(nn.Module):
    def __init__(self, in_channel=1, num_classes=10):
        super(StudentModel, self).__init__()
        self.relu = nn.ReLU()
        self.fc1 = nn.Linear(784, 20)
        self.fc2 = nn.Linear(20, 20)
        self.fc3 = nn.Linear(20, num_classes)
    
    def forward(self, x):
        x = x.view(-1, 784)
        x = self.fc1(x)
        x = self.relu(x)

        x = self.fc2(x)
        x = self.relu(x)

        x = self.fc3(x)

        return x

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


#load MNIST datasets
train_dataset = torchvision.datasets.MNIST(
    root = "./dataset/",
    train=True,
    transform=transforms.ToTensor(),
    download=True
)
test_dataset = torchvision.datasets.MNIST(
    root = "./dataset/",
    train = False,
    transform=transforms.ToTensor(),
    download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)


if __name__ == "__main__":
    
    """
    从头训练学生模型
    """
    model = StudentModel().to(device)

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
    epochs = 10

    for epoch in range(epochs):
        model.train()

        for data, targets in tqdm(train_loader):
            data = data.to(device)
            targets = targets.to(device)
            prediction = model(data)
            loss = criterion(prediction, targets)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        model.eval()
        num_correct = 0
        num_samples = 0

        with torch.no_grad():
            for x, y in test_loader:
                x = x.to(device)
                y = y.to(device)

                prediction = model(x)
                prediction = prediction.max(1).indices
                num_correct += (prediction == y).sum()
                num_samples += prediction.size(0)
            
            acc = (num_correct/num_samples).item()
        
        model.train()
        print("Epoch:{}\t Accuracy:{:.4f}".format(epoch, acc))
        torch.save(model.state_dict(), './weights/student/student_{}.pth'.format(acc))

    """
    学生模型
    Epoch:9  Accuracy:0.9224
    """

在这里插入图片描述

经过10个epoch训练,教师模型的精度为 Accuracy:0.9224

知识蒸馏训练

import torch
from torch import nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
from torchinfo import summary
from tqdm import tqdm
from teacher import TeacherModel
from student import StudentModel

torch.manual_seed(0)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

torch.backends.cudnn.benchmark = True

#load MNIST datasets
train_dataset = torchvision.datasets.MNIST(
    root = "./dataset/",
    train=True,
    transform=transforms.ToTensor(),
    download=True
)
test_dataset = torchvision.datasets.MNIST(
    root = "./dataset/",
    train = False,
    transform=transforms.ToTensor(),
    download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)

if __name__ == "__main__":
    """
    学生模型蒸馏训练
    """


    student_model = StudentModel().to(device)

    teacher_model = TeacherModel().to(device).eval()
    teacher_model.load_state_dict(torch.load("./weights/teacher/teacher_0.9830999970436096.pth"))

    student_model.train()

    Temp = 4
    alpha = 0.8

    hard_loss = nn.CrossEntropyLoss()

    soft_loss = nn.KLDivLoss(reduction='batchmean')


    optimizer = torch.optim.Adam(student_model.parameters(), lr=1e-4)
    epochs = 20

    for epoch in range(epochs):
        student_model.train()

        for data, targets in tqdm(train_loader):
            data = data.to(device)
            targets = targets.to(device)

            #教师预测
            with torch.no_grad():
                teacher_predictions = teacher_model(data)
                teacher_predictions = teacher_predictions.detach()
            
            student_predictions = student_model(data)

            student_loss = hard_loss(student_predictions, targets)

            distillation_loss = soft_loss(
                F.log_softmax(student_predictions / Temp, dim=1),
                F.softmax(teacher_predictions / Temp, dim=1)
            )

            loss = (1-alpha) * Temp * Temp * distillation_loss + alpha * student_loss

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        student_model.eval()
        num_correct = 0
        num_samples = 0

        with torch.no_grad():
            for x, y in test_loader:
                x = x.to(device)
                y = y.to(device)

                prediction = student_model(x)
                prediction = prediction.max(1).indices
                num_correct += (prediction == y).sum()
                num_samples += prediction.size(0)
            
            acc = (num_correct/num_samples).item()
        
        student_model.train()
        print("Epoch:{}\t Accuracy:{:.4f}".format(epoch, acc))
        torch.save(student_model.state_dict(), './weights/knowledge_distillation/student_{}.pth'.format(acc))

"""
Temp = 4, alpha = 0.3
学生训练: Epoch:9  Accuracy:0.9224
教师训练: Epoch:8  Accuracy:0.9831
学生蒸馏训练  Epoch:19   Accuracy:0.9288

Temp = 4, alpha = 0.5
学生训练: Epoch:9  Accuracy:0.9224
教师训练: Epoch:8  Accuracy:0.9831
学生蒸馏训练  Epoch:19   Accuracy:0.9308

Temp = 4, alpha = 0.8
学生训练: Epoch:9  Accuracy:0.9224
教师训练: Epoch:8  Accuracy:0.9831
学生蒸馏训练  Epoch:19  Accuracy:0.9293
"""

学生蒸馏训练,参照另一篇博客的四个注意事项,笔者选择温度系数T=4,损失权重alpha为0.3,0.5,0.8分别进行实验,得到实验结果如下

模型温度参数T损失权重alpha分类精度
教师模型98.31%
学生模型92.24%
蒸馏学生模型40.392.88%
蒸馏学生模型40.593.08%
蒸馏学生模型40.892.93%

实验总结:通过表格对比,证明了知识蒸馏的有效性。此外,损失权重alpha取值的不同,也影响着蒸馏学生模型的分类精度,说明了温度系数,损失权重,都对蒸馏这个学习过程有着重要的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值