16、UAV NOMA - MEC in IoT: Security Offloading and Optimization

UAV NOMA - MEC in IoT: Security Offloading and Optimization

1. Introduction

In the context of the Internet of Things (IoT), Unmanned Aerial Vehicle (UAV) - aided Non - Orthogonal Multiple Access (NOMA) with Mobile Edge Computing (MEC) has emerged as a promising approach for enhancing security offloading performance. This blog delves into the numerical results, system parameters, and the analysis of the Secrecy Success Cumulative Probability (SSCP) in such a system.

2. System Parameters

The following table presents the system parameters considered in all simulations:
| Parameter | Value | Parameter | Value | Parameter | Value |
| — | — | — | — | — | — |
| ((x_A, y_A)) | ((40, 0)) (m) | (A) | (0.1581) | (P) | ((0, 20)) (dB) |
| ((x_B, y_B)) | ((0, 40)) (m) | (B) | (9.6177) | (T) | (0.5) (s) |
| ((x_E, y_E)) | ((75, 75)) (m) | (O_{LoS}) | (1) | (\rho) | (0.75) |
| (x_U) | ((0, 50)) (m) | (O_{NLoS}) | (20) | (\sigma) | (2) |
| (y_U) | ((0, 50)) (m) | (c) | (3\times10^{8}) | (W) | (10^{8}) |
| (h_U) | ((20, 100)) (m) | (f_c) | (10^{7}) | (\beta_A=\beta_B) | (0.5) |
| (L) | (10^{4}) | (f_{MEC}^U) | (10^{8}) | (\mathcal{I}) | (10^{2}) |
| (O = Q) | (10^{2}) | (\varsigma) | (10^{2}) | (\mathcal{N}) | (100) |

3. Impact of Average SNR and Number of ED Clusters on SSCP

The impact of the average SNR (\gamma_0) and the number of Energy - harvesting Devices (ED) clusters on the SSCP of the entire system is shown in Figure 3.
- Monte Carlo Simulation and Analytical Match : The Monte Carlo simulation and the analytical results show a strong match, validating the accuracy of the proposed model.
- Effect of Device Number : When the number of devices in the two clusters increases, the SSCP also increases. This is because the UAV has more choices to select the best ED in the two clusters.
- Effect of Transmit Power : Increasing the transmit power of the device improves the system’s security offloading performance. As the transmit power rises, the device has more power to communicate with the UAV.

The following mermaid flowchart depicts the relationship between device number, transmit power, and SSCP:

graph LR
    A[Number of Devices in Clusters] -->|Increase| B[More UAV Selection Options]
    B -->|Leads to| C[Increase in SSCP]
    D[Transmit Power of Device] -->|Increase| E[More Power for Communication]
    E -->|Results in| C

4. Impact of UAV Altitude and Number of ED Clusters on SSCP

Figure 4 shows the impact of the UAV altitude (h_U) and the number of ED clusters on the SSCP of the entire system.
- Optimal Altitude : There exists an optimal altitude for the UAV to maximize the SSCP. When the UAV altitude is low, the probability of encountering Non - Line - of - Sight (NLoS) is greater than that of encountering Line - of - Sight (LoS) due to urban obstacles. As the altitude increases, the probability of LoS between the UAV and the ED becomes greater, improving the performance. However, a very high altitude increases the communication distance between the UAV and the ED, leading to increased path loss and decreased performance.

The following list summarizes the factors affecting SSCP based on UAV altitude:
1. Low altitude: Higher NLoS probability, lower SSCP.
2. Increasing altitude: Higher LoS probability, increasing SSCP.
3. Very high altitude: Increased path loss, decreasing SSCP.

5. Impact of UAV Location on SSCP

The 3D result in Figure 5 depicts the SSCP value domain as a result of the simultaneous effects of the UAV’s location ((x_U, y_U)).
- Optimal Location : There exists an optimal position ((x_U^ , y_U^ )) that optimizes the system’s performance. The UAV will select this optimal location to communicate with the EDs of the two clusters. This is an outstanding characteristic of UAV - based systems.

6. Impact of UAV Location and Altitude on SSCP

Figure 6 shows the impact of the UAV’s location and altitude ((x_U^ , y_U^ , h_U^ )) on the SSCP of the entire system.
-
Optimization Algorithm *: By applying the SSCPMax - PSO algorithm to find the optimal values, the secret offloading performance is better compared to self - fixing the UAV’s parameters.

The following mermaid flowchart shows the process of optimizing SSCP using the SSCPMax - PSO algorithm:

graph LR
    A[Initial UAV Parameters] --> B[SSCPMax - PSO Algorithm]
    B --> C[Optimal UAV Location and Altitude \((x_U^*, y_U^*, h_U^*)\)]
    C --> D[Improved SSCP]

7. Conclusion

In summary, the study investigated the secrecy offloading performance of a UAV - aided NOMA - MEC system in IoT over a Rayleigh fading channel. A fourth - phase system operating protocol based on UAV - ED selection was proposed, focusing on NOMA - MEC techniques to enhance the secrecy offloading performance. Closed - form expressions of the SSCP of the entire system were obtained, and a PSO - based algorithm was proposed to determine the UAV’s location and altitude for maximizing the SSCP. Numerical results validated the proposed system’s secrecy offloading performance.

8. Proof of Theorem 1

By substituting equations (3), (10), (11), (13), (14), (15), (16), (17), (18) into (19), the system’s (\mathcal{S}) can be rewritten as:
[
\begin{align }
\mathcal{S}&=\Pr\left{X > \Delta_2(Y), Y > \Delta_1, P < \Delta_3(Y), Z < \left(\frac{\gamma_{A^
U}X}{\gamma_{B^ U}Y + 1}+1 - \theta_{A^ }\right)\frac{\gamma_{B^ E}P + 1}{\theta_{A^ }\gamma_{A^ E}}\right}\
&=\int_{\Delta_1}^{\infty}\int_{\Delta_2(Y)}^{\infty}\int_{0}^{\Delta_3(Y)}F_Z\left[\left(\frac{\gamma_{A^
U}X}{\gamma_{B^ U}Y + 1}+1 - \theta_{A^ }\right)\frac{\gamma_{B^ E}P + 1}{\theta_{A^ }\gamma_{A^ E}}\right]f_P(P)f_X(X)f_Y(Y)dPdXdY
\end{align
}
]
where (X = |g_{A^ U}|^2), (Y = |g_{B^ U}|^2), (Z = |g_{A^ E}|^2), (P = |g_{B^ E}|^2), (\Delta_1=\frac{\varphi_{B^ }}{\gamma_{B^ U}}), (\Delta_2(Y)=\frac{\varphi_{A^ }(\gamma_{B^ U}Y + 1)}{\gamma_{A^ U}}), (\Delta_3(Y)=\frac{\gamma_{B^ U}Y + 1-\theta_{B^ }}{\theta_{B^ }\gamma_{B^*E}}).

8.1 Solving the First Integral ((I_1))

Combining the Cumulative Distribution Function (CDF) in (4) and the Probability Density Function (PDF) in (5) into (I_1), we have:
[
\begin{align }
I_1&=\frac{1}{\lambda_{B^
E}}\left(\int_{0}^{\Delta_3(Y)}e^{-\frac{P}{\lambda_Q}}dP - e^{-\Delta_5(X,Y)}\int_{0}^{\Delta_3(Y)}e^{-\Delta_4(X,Y)P}dP\right)\
&=1 - e^{-\frac{\Delta_3(Y)}{\lambda_{B^ E}}}-\frac{e^{-\Delta_5(X,Y)}}{\lambda_{B^ E}\Delta_4(X,Y)}\left(1 - e^{-\Delta_3(Y)\Delta_4(X,Y)}\right)
\end{align }
]
where (\Delta_4(X,Y)=\left(\frac{\gamma_{A^
U}X}{\gamma_{B^ U}Y + 1}+1 - \theta_{A^ }\right)\frac{\gamma_{B^ E}}{\lambda_{A^ E}\theta_{A^ }\gamma_{A^ E}}+\frac{1}{\lambda_{B^ E}}) and (\Delta_5(X,Y)=\left(\frac{\gamma_{A^ U}X}{\gamma_{B^ U}Y + 1}+1 - \theta_{A^ }\right)\frac{1}{\lambda_{A^ E}\theta_{A^ }\gamma_{A^*E}}).

8.2 Solving the Second Integral ((I_2))

Substituting (I_1) in (32) and the PDF in (8) into the second integral (I_2), we get:
[
\begin{align }
I_2&=\sum_{k = 1}^{N}\binom{N}{k}\frac{(- 1)^{k + 1}k}{\lambda_{A^
U}}\left[\int_{\Delta_2(Y)}^{\infty}e^{-\frac{kX}{\lambda_{A^ U}}}dX-\int_{\Delta_2(Y)}^{\infty}e^{-\frac{\Delta_3(Y)}{\lambda_{B^ E}}-\frac{kX}{\lambda_{A^ U}}}dX-\int_{\Delta_2(Y)}^{\infty}\frac{e^{-\Delta_5(X,Y)-\frac{kX}{\lambda_{A^ U}}}}{\lambda_{B^ E}\Delta_4(X,Y)}\left(1 - e^{-\Delta_3(Y)\Delta_4(X,Y)}\right)dX\right]
\end{align
}
]
For (I_{21}), using Eq. (3.351.111), we have:
[
I_{21}=\frac{\lambda_{A^ U}}{k}e^{-\frac{k\Delta_2(Y)}{\lambda_{A^ U}}}-\frac{\lambda_{A^ U}}{k}e^{-\frac{\Delta_3(Y)}{\lambda_{B^ E}}-\frac{k\Delta_2(Y)}{\lambda_{A^ U}}}
]
For (I_{22}), by letting (v = e^{-X}) and (X=-\ln(v)) and applying the Gaussian - Chebyshev quadrature method:
[
I_{22}=\frac{\pi e^{-\Delta_2(Y)}}{2O}\sum_{o = 1}^{O}\sqrt{1-\zeta_o^2}\frac{\omega_o^{\frac{k}{\lambda_X}-1}e^{-\Delta_5(\delta_o,Y)}}{\lambda_{B^
E}\Delta_4(\delta_o,Y)}\left(1 - e^{-\Delta_3(Y)\Delta_4(\delta_o,Y)}\right)
]
where (\zeta_o=\cos\left(\frac{\pi(2o - 1)}{2O}\right)), (\omega_o=\frac{(\zeta_o + 1)e^{-\Delta_2(Y)}}{2}), (\delta_o=-\ln(\omega_o)), and (O) is the complexity versus accuracy trade - off coefficient.

Combining the results of (I_{21}) and (I_{22}), (I_2) can be rewritten as:
[
\begin{align }
I_2&=\sum_{k = 1}^{N}\binom{N}{k}(-1)^{k + 1}\left[e^{-\frac{k\Delta_2(Y)}{\lambda_{A^
U}}}-e^{-\frac{\Delta_3(Y)}{\lambda_{B^ E}}-\frac{k\Delta_2(Y)}{\lambda_{A^ U}}}-\frac{\pi k e^{-\Delta_2(Y)}}{2O\lambda_{A^ U}\lambda_{B^ E}}\sum_{o = 1}^{O}\sqrt{1-\zeta_o^2}\frac{\omega_o^{\frac{k}{\lambda_{A^ U}}-1}e^{-\Delta_5(\delta_o,Y)}}{\Delta_4(\delta_o,Y)}\left(1 - e^{-\Delta_3(Y)\Delta_4(\delta_o,Y)}\right)\right]
\end{align
}
]

8.3 Solving the Final Integral

Finally, combining (I_2) in (36) and the PDF in (8) into the last integral in (30), (\mathcal{S}) is expressed as:
[
\begin{align }
\mathcal{S}&=\sum_{u = 1}^{M}\binom{M}{u}\frac{(-1)^{u + 1}u}{\lambda_{B^
U}}\sum_{k = 1}^{N}\binom{N}{k}(-1)^{k + 1}\left[e^{-\Xi_2(k)}\int_{\Delta_1}^{\infty}e^{-\Xi_1(k,u)Y}dY - e^{-\Xi_4(k)}\int_{\Delta_1}^{\infty}e^{-\Xi_3(k,u)Y}dY-\frac{\pi k}{2O\lambda_{A^ U}\lambda_{B^ E}}\sum_{o = 1}^{O}\sqrt{1-\zeta_o^2}\int_{\Delta_1}^{\infty}e^{-\Delta_2(Y)}\frac{\omega_o^{\frac{k}{\lambda_{A^ U}}-1}e^{-\Delta_5(\delta_o,Y)-\frac{uY}{\lambda_{B^ U}}}}{\Delta_4(\delta_o,Y)}\left(1 - e^{-\Delta_3(Y)\Delta_4(\delta_o,Y)}\right)dY\right]
\end{align*}
]

9. Practical Implications and Considerations

9.1 Deployment Strategies

When deploying a UAV - aided NOMA - MEC system in an IoT environment, the following practical strategies can be considered based on the above findings:
- Device Clustering : Grouping energy - harvesting devices into clusters can significantly improve the SSCP. Operators should aim to increase the number of devices in each cluster to provide the UAV with more options for selecting the best - performing EDs.
- UAV Altitude and Location : The optimal altitude and location of the UAV are crucial for maximizing the SSCP. Before deployment, a detailed analysis of the environment, including the presence of urban obstacles, should be conducted. The SSCPMax - PSO algorithm can be used to determine the best altitude and location for the UAV.

The following table summarizes the deployment strategies and their impacts:
| Deployment Strategy | Impact on SSCP |
| — | — |
| Increase device clustering | Increases SSCP due to more UAV selection options |
| Optimize UAV altitude | Maximizes SSCP by balancing LoS and path loss |
| Optimize UAV location | Improves SSCP by ensuring better communication with EDs |

9.2 System Scalability

As the number of IoT devices continues to grow, the scalability of the UAV - aided NOMA - MEC system becomes an important consideration.
- Increasing Device Density : With more devices in the system, the UAV can select from a larger pool of EDs, potentially increasing the SSCP. However, this also requires more computational resources for the UAV to perform the selection process.
- Multiple UAVs : In large - scale IoT deployments, multiple UAVs can be used to cover a wider area. Each UAV can be responsible for a specific set of ED clusters, and the overall SSCP can be optimized by coordinating the altitudes and locations of all UAVs.

The following mermaid flowchart shows the process of system scalability:

graph LR
    A[Increasing IoT Devices] -->|More Selection Options| B[Potential Increase in SSCP]
    A -->|Higher Computational Demand| C[Resource Management]
    D[Large - scale IoT Deployment] -->|Multiple UAVs| E[Coordinated UAV Operation]
    E -->|Optimize Overall SSCP| B

10. Future Research Directions

10.1 Advanced Optimization Algorithms

Although the PSO - based algorithm shows promising results in optimizing the UAV’s location and altitude, there is room for improvement. Future research could explore more advanced optimization algorithms, such as genetic algorithms or ant colony optimization, to further enhance the SSCP.

10.2 Integration with Other Technologies

The UAV - aided NOMA - MEC system can be integrated with other emerging technologies in the IoT ecosystem.
- Artificial Intelligence : AI techniques can be used to predict the behavior of IoT devices and optimize the UAV’s operation in real - time. For example, machine learning algorithms can analyze historical data to predict the best time to offload tasks from EDs to the UAV.
- Blockchain : Blockchain technology can enhance the security and trustworthiness of the offloading process. By using blockchain, the transactions between the UAV, EDs, and the MEC server can be recorded and verified, ensuring the integrity of the data.

The following list outlines the future research directions:
1. Develop advanced optimization algorithms for UAV operation.
2. Integrate the system with AI for real - time optimization.
3. Incorporate blockchain technology for enhanced security.

11. Conclusion

In conclusion, the UAV - aided NOMA - MEC system in IoT offers a promising solution for improving security offloading performance. Through numerical analysis and theoretical proof, we have demonstrated the importance of factors such as device clustering, UAV altitude, and location in maximizing the SSCP. The proposed PSO - based algorithm provides an effective way to optimize the UAV’s operation. However, there are still many areas for future research, including advanced optimization algorithms and integration with other technologies. By continuing to explore these directions, we can further enhance the performance and security of IoT systems.

To summarize the key points of this blog:
1. The SSCP of the system is affected by factors such as device number, transmit power, UAV altitude, and location.
2. The proposed PSO - based algorithm can optimize the UAV’s location and altitude to maximize the SSCP.
3. Practical deployment strategies and future research directions have been discussed to improve the system’s performance and scalability.

graph LR
    A[Key Factors] --> B[SSCP Optimization]
    B --> C[Practical Deployment]
    C --> D[Future Research]
    D -->|Enhance Performance| B

This flowchart shows the overall relationship between key factors, optimization, deployment, and future research in the UAV - aided NOMA - MEC system for IoT.

这是一个基于AI视觉识别与3D引擎技术打造的沉浸式交互圣诞装置。 简单来说,它是一棵通过网页浏览器运行的数字智慧圣诞树,你可以用真实的肢体动作来操控它的形态,并将自己的回忆照片融入其中。 1. 核心技术组成 这个作品是由三个尖端技术模块组成的: Three.js 3D引擎:负责渲染整棵圣诞树、动态落雪、五彩挂灯和树顶星。它创建了一个具备光影和深度感的虚拟3D空间。 MediaPipe AI手势识别:调用电脑摄像头,实时识别手部的21个关键点。它能读懂你的手势,如握拳、张开或捏合。 GSAP动画系统:负责处理粒子散开与聚合时的平滑过渡,让成百上千个物体在运动时保持顺滑。 2. 它的主要作用与功能 交互式情感表达: 回忆挂载:你可以上传本地照片,这些照片会像装饰品一样挂在树上,或者像星云一样环绕在树周围。 魔法操控:握拳时粒子迅速聚拢,构成一棵挺拔的圣诞树;张开手掌时,树会瞬间炸裂成星光和雪花,照片随之起舞;捏合手指时视线会拉近,让你特写观察某一张选中的照片。 节日氛围装饰: 在白色背景下,这棵树呈现出一种现代艺术感。600片雪花在3D空间里缓缓飘落,提供视觉深度。树上的彩色粒子和白色星灯会周期性地呼吸闪烁,模拟真实灯串的效果。 3. 如何使用 启动:运行代码后,允许浏览器开启摄像头。 装扮:点击上传照片按钮,选择温馨合照。 互动:对着摄像头挥动手掌可以旋转圣诞树;五指张开让照片和树化作满天星辰;攥紧拳头让它们重新变回挺拔的树。 4. 适用场景 个人纪念:作为一个独特的数字相册,在节日陪伴自己。 浪漫惊喜:录制一段操作手势让照片绽放的视频发给朋友。 技术展示:作为WebGL与AI结合的案例,展示前端开发的潜力。
【顶级EI复现】计及连锁故障传播路径的电力系统 N-k 多阶段双层优化及故障场景筛选模型(Matlab代码实现)内容概要:本文提出了一种计及连锁故障传播路径的电力系统N-k多阶段双层优化及故障场景筛选模型,并提供了基于Matlab的代码实现。该模型旨在应对复杂电力系统中可能发生的N-k故障(即多个元件相继失效),通过构建双层优化框架,上层优化系统运行策略,下层模拟故障传播过程,从而实现对关键故障场景的有效识别与筛选。研究结合多阶段动态特性,充分考虑故障的时序演化与连锁反应机制,提升了电力系统安全性评估的准确性与实用性。此外,模型具备良好的通用性与可扩展性,适用于大规模电网的风险评估与预防控制。; 适合人群:电力系统、能源互联网及相关领域的高校研究生、科研人员以及从事电网安全分析、风险评估的工程技术人员。; 使用场景及目标:①用于电力系统连锁故障建模与风险评估;②支撑N-k故障场景的自动化筛选与关键脆弱环节识别;③为电网规划、调度运行及应急预案制定提供理论依据和技术工具;④服务于高水平学术论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码深入理解模型构建细节,重点关注双层优化结构的设计逻辑、故障传播路径的建模方法以及场景削减技术的应用,建议在实际电网数据上进行测试与验证,以提升对模型性能与适用边界的认知。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值