机器学习算法在学习过程中对某种假设(hypothesis)的偏好,称为“归纳偏好”(inductive bias),或简称为“偏好”。
所谓的inductive bias,指的是人类对世界的先验知识,对应在网络中就是网络结构。
下面是一些inductive bias的例子:
Algorithm | Inductive Bias
Linear Regression | The relationship between the attributes x and the output y is linear. The goal is to minimize the sum of squared errors.
Single-Unit Perceptron | Each input votes independently toward the final classification (interactions between inputs are not possible).
Neural Networks with Backpropagation | Smooth interpolation between data points.
K-Nearest Neighbors | The classification of an instance x will be most similar to the classification of other instances that are nearby in Euclidean distance.
Support Vector Machines | Distinct classes tend to be separated by wide margins.
Naive Bayes | Each input depends only on the output class or label; the inputs are independent from each other.
本文介绍了机器学习中的一个重要概念——归纳偏好(inductive bias),即算法在学习过程中的假设偏好。归纳偏好反映了人类对世界的先验知识,并通过不同算法的具体实现展现出来。文章列举了线性回归、感知器、神经网络等常见算法的归纳偏好。
982

被折叠的 条评论
为什么被折叠?



