【论文笔记】点云配准网络 3DRegNet: A Deep Neural Network for 3D Point Registration 2020

3DRegNet是一种基于深度学习的点云配准方法,超越了RANSAC和ICP的精度,在CPU上达到25倍RANSAC的速度。该方法使用DNN进行位姿回归,通过SVD分解求解变换矩阵,适用于已知点云对应关系的场景。实验对比了不同的旋转量表示方法和位姿损失度量,展示了3DRegNet在精度和速度上的优势。

Instituto Superior T ́ecnico, Lisboa; Google;印度科学研究所,班加罗尔;马里兰大学帕克分校
代码链接:https://github.com/3DVisionISR/3DRegNet

本文提出了一种基于深度学习的点云配准方法3DRegNet,超越了现有RANSAC和ICP的精度,同时在CPU上也达到了25倍RANSAC的速度。

注意3DRegNet假设两个点云之间的对应关系是给定的,3DRegNet只负责剔除噪声点,生成位姿变换矩阵这两个任务。

实验部分对现有的旋转量的各种表示方法、位姿损失的度量方法进行了结果对比。
此外,还对SVD分解和DNN回归两种位姿解算方法进行了对比。

3DRegNet

在这里插入图片描述

a: 使用DNN进行位姿回归的网络结构
b: 使用SVD进行位姿解算的模型结构
ab是本文提出的两种模型,实验部分对其性能进行了对比。
c: 分类网络,对给定的对应关系进行内点、噪声点的分类。
d: 使用DNN进行位姿解算的配准模块

分类block

网络层结构如上图所示,主要是FC+ResNet级联
输入N个对应关系(两个对应点坐标)N X 6,输出 N X 1,即每个对应关系的置信度(权重)。

DNN 配准网络:

该网络将分类网络中的输入和每一层输出进行最大池化后进行context normalization,然后作为输入进行配准。最后输出旋转量预测值和平移量预测值。

SVD配准模块:

使用预测的对应关系的权重将噪声点去除,然后再内点中进行中心化操作,使用SVD分解求解变换矩阵和平移向量:
M = ∑ i ∈ I w i p i q i T \mathbf{M}=\sum_{i \in \mathcal{I}} w_{i} \mathbf{p}_{i} \mathbf{q}_{i}^{T} M=iIwipiqiT
R = U diag ⁡ ( 1 , 1 , det ⁡ ( U V T ) ) V T \mathbf{R}=\mathbf{U} \operatorname{diag}\left(1,1, \operatorname{det}\left(\mathbf{U V}^{T}\right)\right) \mathbf{V}^{T} R=Udiag(1,1,det(UVT))VT
t = 1 N I ( ∑ i ∈ I p i − R ∑ i ∈ I q i ) \mathbf{t}=\frac{1}{N_{\mathcal{I}}}\left(\sum_{i \in \mathcal{I}} \mathbf{p}_{i}-\mathbf{R} \sum_{i \in \mathcal{I}} \mathbf{q}_{i}\right) t=NI1(

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值