MapNet: An Allocentric Spatial Memory for Mapping Environments 2018 论文笔记

本文介绍了一种基于深度学习的3D环境建图方法,该方法使用RNN网络和动态空间记忆模块,能从RGBD输入中提取信息并转换为世界坐标系下的2.5D地图表示,支持多种任务,如定位和导航。通过端到端训练,实现了对环境的动态更新,简化了定位和注册问题。

牛津大学,CVPR-2018,建图

1.论文摘要

论文设计了一个可导、端到端的建图模块,能够将传感器感受到的、相机中心视角的环境信息转化为世界坐标系下的表示,即建图。得到的地图是环境的2.5D表示,存储了深度神经网络模块从RGBD输入中提取的信息。该地图与SFM方法得到的结果不同,包含能够支持多种任务的信息。

2.简介 && 相关工作

深度学习在以图像为中心的任务中取得了 巨大的成就(分割、检测、分类),但是在图像理解上仍然有待深入研究,其中之一就是对3D空间和几何结构的推理。传统SLAM使用基于原始信息(点云、图像patches)的增量式建图方法,虽然works well ,但是不能提供自然的可学习的特征表达。这种高纬的特征是十分有用的,比如人无论在大小尺度的环境中都可以有效的进行导航,即使没有传统slam那样的精确重建地图。

本文提出了一种可以用于深度学习方法的3D环境的分布式表达,即建图模块。RNN网络负责使用该表达来编解码摄像头看到的真实环境。

建图模块的实现: dynamic spatial memory (动态空间记忆),根据相机的观测可以进行增量更新。使得RNN可以记忆已经到达过的场景,并对相机位姿进行重定位。

论文贡献:

  1. 设计的模型将自我中心和异地中心的信息考虑在内。(待理解)

    这里自中心与异中心的差别在于坐标系的选择,异地中心指以世界坐标系为中心,自中心指相机中心

  2. 解决了如何确定将何种信息存储到地图中的问题

3.论文方法

提出了一个可以根据相机数据动态构建环境表达的RNN,其核心组件是一个 allocentric spatial memory module(异地记忆模块)

CVPR2018的oral论文合集。 包含以下论文: A Certifiably Globally Optimal Solution to the Non-Minimal Relative Pose Problem.pdf Accurate and Diverse Sampling of Sequences based on a “Best of Many” Sample Objective .pdf Actor and Action Video Segmentation from a Sentence .pdf An Analysis of Scale Invariance in Object Detection - SNIP .pdf Analytic Expressions for Probabilistic Moments of PL-DNN with Gaussian Input.pdf Are You Talking to Me_ Reasoned Visual Dialog Generation through Adversarial Learning .pdf Augmented Skeleton Space Transfer for Depth-based Hand Pose Estimation .pdf Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering .pdf CodeSLAM — Learning a Compact, Optimisable Representation for Dense Visual SLAM .pdf Context Contrasted Feature and Gated Multi-scale Aggregation for Scene Segmentation.pdf Context Encoding for Semantic Segmentation.pdf Convolutional Neural Networks with Alternately Updated Clique .pdf Deep Layer Aggregation.pdf Deep Learning of Graph Matching.pdf DensePose Multi-Person Dense Human Pose Estimation In The Wild.pdf Density Adaptive Point Set Registration.pdf Detail-Preserving Pooling in Deep Networks.pdf Direction-aware Spatial Context Features for Shadow Detection .pdf Discriminative Learning of Latent Features for Zero-Shot Recognition .pdf DoubleFusion_Real-time Capture of Human Performance with Inner Body Shape from a Single Depth Sensor.pdf Efficient Optimization for Rank-based Loss Functions .pdf Egocentric Activity Recognition on a Budget .pdf Fast and Furious_Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net.pdf Feature Space Transfer for Data Augmentation.pdf Finding It”_ Weakly-Supervised Reference-Aware Visual Grounding in Instructional Video” .pdf Finding Tiny Faces in the Wild with Generative Adversarial Network.pdf FlipDial_A Generative Model for Two-Way Visual Dialogue .pdf Group Consistent Similarity Learning via Deep CRFs for Person Re-Identification .pdf High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs .pdf Hybrid Camera Pose Estimation .pdf Illuminant Spectra-based Source Separation Using Flash Photography .pdf Im2Flow_Motion Hallucination from Static Images for Action Recognition .pdf Im2Pano3D_Extrapolating 360 Structure and Semantics Beyond the Field of View .pdf Improved Fusion of Visual and Language Representations by Dense Symmetric Co-Attention for Visual Question Answering .pdf Learning Face Age Progression_A Pyramid Architecture of GANs .pdf Learning to Find Good Correspondences .pdf Left-Right Comparative Recurrent Model for Stereo Matching .pdf MapNet_An Allocentric Spatial Memory for Mapping Environments.pdf Maximum Classifier Discrepancy for Unsupervised Domain Adaptation .pdf Neural Kinematic Networks for Unsupervised Motion Retargetting.pdf
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值