
AI
文章平均质量分 77
蓝天居士
修齐治平,先忧后乐
展开
-
Anthropic发布的MCP,彻底打开了企业级 AI 的想象空间
Anthropic发布的MCP,彻底打开了企业级 AI 的想象空间转载 2025-01-18 15:47:24 · 73 阅读 · 0 评论 -
OpenAI Gym入门与实操(3)
OpenAI Gym入门与实操(3)原创 2023-07-03 15:14:19 · 601 阅读 · 0 评论 -
OpenAI Gym入门与实操(2)
OpenAI Gym入门与实操(2)原创 2023-07-03 14:10:20 · 836 阅读 · 0 评论 -
强化学习基础知识
强化学习基础知识原创 2023-06-30 15:03:14 · 314 阅读 · 0 评论 -
OpenAI Gym入门与实操(1)
OpenAI Gym入门与实操(1)原创 2023-06-30 11:23:15 · 2634 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 6
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 6原创 2023-06-30 09:16:30 · 281 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 5(5)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 5(5)原创 2023-06-29 17:29:50 · 124 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 5(4)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 5(4)原创 2023-06-29 16:59:14 · 97 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 5(3)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 5(3)原创 2023-06-29 16:40:56 · 136 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 5(2)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 5(2)原创 2023-06-29 15:50:08 · 102 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 5(1)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 5(1)原创 2023-06-29 11:33:10 · 110 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 4(3)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 4(3)原创 2023-06-29 09:57:53 · 110 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 4(2)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 4(2)原创 2023-06-28 17:06:02 · 106 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 4(1)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 4(1)原创 2023-06-28 15:37:52 · 113 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 3(3)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 3(3)原创 2023-06-28 11:13:14 · 162 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 3(2)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 3(2)原创 2023-06-27 17:17:02 · 155 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 3(1)
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 3(1)原创 2023-06-27 16:43:01 · 154 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 2
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters(2)原创 2023-06-27 15:14:56 · 136 阅读 · 0 评论 -
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters 1
论文译读 —— STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters for Static Workload Performance(1)原创 2023-06-26 18:39:04 · 230 阅读 · 0 评论 -
Resnet Attention Model 结构
ResidualAttentionModelCovid_92( (conv1): Sequential( (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True...原创 2020-11-25 20:00:54 · 596 阅读 · 0 评论 -
conda安装cv2库
conda安装cv2库conda install opencv-python或者pip install opencv-python(不过好像是这个比较有效)转载 2020-11-25 07:32:53 · 33686 阅读 · 5 评论 -
pytorch中数据在CPU与GPU之间的切换
数据在CPU与GPU之间来回切换的pytorch方法:数据从CPU放到GPU,即数据从CPU到GPU的迁移,使用以下语句:data.to("cuda")数据 从GPU到CPU,使用以下语句:data.to("cpu")data通常会有两种数据类型:1. Tensor2. Moduleto函数:转换数据类型/设备1. tensor.to(*args, **kwargs)2. module.to(*args, **kwargs)举例:...原创 2020-11-07 23:31:13 · 5527 阅读 · 0 评论 -
torch.max()综合
参考:https://blog.youkuaiyun.com/LEELOVESTUDY/article/details/106521130?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLear原创 2020-11-07 21:06:38 · 361 阅读 · 0 评论 -
CUDA:out of memory问题
基于UCSD-AI4H/COVID-CT进行训练时,出现以下错误:RuntimeError: CUDA out of memory. Tried to allocate 98.00 MiB (GPU 0; 2.00 GiB total capacity; 1.53 GiB already allocated; 9.93 MiB free; 1.55 GiB reserved in total by PyTorch)解决方法:...原创 2020-08-19 23:14:26 · 1365 阅读 · 0 评论 -
visdom安装及运行
本机环境:Pycharm-2019.3.3 torchvision-0.5.0 Python-3.7 pytorch-1.4.0 numpy、sklearn、Visdom、torchxrayvision GTX1050安装visdom,命令为:pip install visdom安装过程log如下:Looking in indexes: https://mirrors.aliyun.com/pypi/simpleCollecting visdom Downloadi..原创 2020-08-18 22:19:58 · 3159 阅读 · 0 评论 -
No module named ‘requests‘的问题及解决
项目中执行 import torchxrayvision as xrv,解决了No module named ‘skimage‘、No module named ‘tqdm‘、No module named ‘pandas‘、No module named ‘pydicom‘的问题后出现以下错误:Traceback (most recent call last): File "D:/研究生/毕业设计/COVID19/COVID19_CT/conduct.py", line 14, in <m.原创 2020-08-17 23:38:38 · 2359 阅读 · 0 评论 -
No module named ‘pydicom‘的问题及解决
项目中执行 import torchxrayvision as xrv,解决了No module named ‘skimage‘、No module named ‘tqdm‘、No module named ‘pandas‘的问题后出现以下错误:Traceback (most recent call last): File "D:/研究生/毕业设计/COVID19/COVID19_CT/conduct.py", line 14, in <module> import torch...原创 2020-08-17 23:34:44 · 5933 阅读 · 2 评论 -
No module named ‘pandas‘的问题及解决
项目中执行 import torchxrayvision as xrv,解决了No module named ‘skimage‘和No module named ‘tqdm‘的问题后出现以下错误:Traceback (most recent call last): File "D:/研究生/毕业设计/COVID19/COVID19_CT/conduct.py", line 14, in <module> import torchxrayvision as xrv File ...原创 2020-08-17 23:29:42 · 24728 阅读 · 4 评论 -
No module named ‘tqdm‘的问题及解决
项目中执行 import torchxrayvision as xrv,解决了No module named ‘skimage‘的问题后,紧跟着出现以下错误:Traceback (most recent call last): File "D:/研究生/毕业设计/COVID19/COVID19_CT/conduct.py", line 14, in <module> import torchxrayvision as xrv File "D:\研究生\毕业设计\COVID1...原创 2020-08-17 23:25:34 · 68392 阅读 · 2 评论 -
No module named ‘skimage‘的问题及解决
项目中执行 import torchxrayvision as xrv时出现以下错误:Traceback (most recent call last): File "D:/研究生/毕业设计/COVID19/COVID19_CT/conduct.py", line 14, in <module> import torchxrayvision as xrv File "D:\研究生\毕业设计\COVID19\COVID19_CT\torchxrayvision\__init_...原创 2020-08-17 23:20:15 · 50043 阅读 · 3 评论 -
conda搭建工作环境
1. 创建虚拟环境执行 conda create -n pytorch_1.4_gpu python=3.7 命令,创建虚拟环境(具体版本根据自己实际情况设定)://///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////Collecting package metadata (current_repodata原创 2020-08-17 22:48:57 · 637 阅读 · 0 评论 -
module ‘torch.jit‘ has no attribute ‘unused‘问题
在执行from torchvision import transforms时出现了以下错误:Traceback (most recent call last): File "D:/研究生/毕业设计/COVID19/COVID19_CT/conduct.py", line 8, in <module> from torchvision import transforms File "D:\Anaconda3\envs\pytorch_1.2_gpu\lib\site-pack...原创 2020-08-17 22:35:24 · 4132 阅读 · 0 评论 -
pycharm下安装sklearn
(pytorch_1.2_gpu) D:\研究生\毕业设计\COVID19\COVID19_CT>pip install sklearnLooking in indexes: https://mirrors.aliyun.com/pypi/simpleCollecting sklearn Downloading https://mirrors.aliyun.com/pypi/packages/1e/7a/dbb3be0ce9bd5c8b7e3d87328e79063f8b263b2b1bfa.原创 2020-08-17 22:08:41 · 8083 阅读 · 0 评论 -
pycharm下载
pycharm官网下载地址:https://www.jetbrains.com/pycharm/download/根据自己的PC,选择不同平台:Windows、Mac、Linux。如果是历史版本,可以选择其中的“Other versions”。网址如下:https://www.jetbrains.com/pycharm/download/other.html...原创 2020-08-15 20:37:08 · 990 阅读 · 0 评论 -
anaconda下载与配置
anaconda下载地址:官网:http://anaconda.com/products/individual清华镜像源:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=N&O=D原创 2020-08-15 17:39:03 · 458 阅读 · 0 评论 -
pytorch及相关工具的安装
pytorch安装安装步骤:1. 检查是否有合适GPU,如果有,则需要安装CUDA和CuDNN。2. CUDA和CuDNN下载和安装(非必须)。3. 下载pytorch的whl文件。4. 下载torchvision的whl文件。5. 通过pip进行安装。6. 通过命令查看pytorch版本,验证pytorch是否安装成功。登录网址:https://download.pytorch.org/whl/torch_stable.html。选择合适的版本进行下载。笔者下载的.原创 2020-08-14 12:05:06 · 442 阅读 · 0 评论 -
COVID-Net工程源码详解(七) - train_tf.py解析
train_tf.py源码如下:from __future__ import print_functionimport tensorflow as tfimport os, argparse, pathlibfrom eval import evalfrom data import BalanceCovidDatasetparser = argparse.ArgumentParser(description='COVID-Net Training Script')parser.add原创 2020-08-08 17:59:14 · 600 阅读 · 0 评论 -
COVID-Net工程源码详解(六) - create_COVIDx.ipynb解析
import numpy as npimport pandas as pdimport osimport randomfrom shutil import copyfileimport pydicom as dicomimport cv2# set parameters heresavepath = 'data'seed = 0np.random.seed(seed) # Reset the seed so all runs are the same.random.seed(...原创 2020-08-06 22:14:56 · 697 阅读 · 4 评论 -
COVID-Net工程源码详解(五) - data.py解析
data.py源码如下:import tensorflow as tffrom tensorflow import kerasimport numpy as npimport osimport cv2from tensorflow.keras.preprocessing.image import ImageDataGeneratordef _process_csv_file(file): with open(file, 'r') as fr: files =原创 2020-08-03 22:03:46 · 434 阅读 · 0 评论 -
COVID-Net工程源码详解(四) - train_eval_inference.md解析
docs/train_eval_inference.md内容如下:# Training, Evaluation and InferenceThe network takes as input an image of shape (N, 224, 224, 3) and outputs the softmax probabilities as (N, 3), where N is the number of batches.If using the TF checkpoints, here are原创 2020-08-02 16:40:59 · 740 阅读 · 0 评论