高阶函数
map/reduce
map
>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']
reduce
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579
map&reduce
from functools import reduce
DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
def char2num(s):
return DIGITS[s]
def str2int(s):
return reduce(lambda x, y: x * 10 + y, map(char2num, s))
filter
def not_empty(s):
return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
结果: ['A', 'B', 'C']
sorted
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True) # 反向
['Zoo', 'Credit', 'bob', 'about']
返回函数
函数作为返回值
不需要立刻求和,而是在后面的代码中,根据需要再计算
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
# 调用lazy_sum()时,返回的并不是求和结果,而是求和函数
>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function lazy_sum.<locals>.sum at 0x101c6ed90>
# 调用函数f时,才真正计算求和的结果:
>>> f()
25
lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数
闭包
注意到返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。
另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()才执行
def count():
fs = []
for i in range(1, 4):
def f():
return i*i
fs.append(f)
return fs
f1, f2, f3 = count()
在上面的例子中,每次循环,都创建了一个新的函数,然后,把创建的3个函数都返回了。
你可能认为调用f1(),f2()和f3()结果应该是1,4,9,但实际结果都是9.原因就在于返回的函数引用了变量i,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i已经变成了3,因此最终结果为9。
返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:
def count():
def f(j):
def g():
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
return fs
匿名函数
不需要显式地定义函数,直接传入匿名函数更方便
关键字lambda表示匿名函数,冒号前面的x表示函数参数。
函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
>>> f = lambda x: x * x
>>> f
<function <lambda> at 0x101c6ef28>
>>> f(5)
25
同样,也可以把匿名函数作为返回值返回,比如
def build(x, y):
return lambda: x * x + y * y
装饰器
由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。
代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
示例:
def log(func):
def wrapper(*args, **kw): # 可接收任意参数调用
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
@log
def now():
print('2015-3-25')
# 把@log放到now()函数的定义处,相当于执行了语句
now = log(now)
调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
@log('execute')
def now():
print('2015-3-25')
# 和两层嵌套的decorator相比,3层嵌套的效果是这样的:
>>> now = log('execute')(now)
# 即首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。
以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有__name__等属性,但你去看经过decorator装饰之后的函数,它们的__name__已经从原来的’now’变成了’wrapper’:
>>> now.__name__
'wrapper'
所以,需要把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。
不需要编写wrapper.name = func.__name__这样的代码,Python内置的functools.wraps就是干这个事的
import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
# 带参数
def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
偏函数
functools下的功能之一:偏函数(Partial function).通过设定参数的默认值,可以降低函数调用的难度
>>> int('12345') # 默认十进制
12345
>>> int('12345', base=8)
5349
>>> int('12345', 16)
74565
# 定义一个int2()的函数,默认把base=2传进去
def int2(x, base=2):
return int(x, base)
functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85
>>> int2('1000000', base=10) # 但也可以在函数调用时传入其他值
1000000
原理介绍:创建偏函数时,实际上可以接收函数对象、*args和**kw这3个参数
int2 = functools.partial(int, base=2)
int2('10010')
#相当于
kw = { 'base': 2 }
int('10010', **kw)
max2 = functools.partial(max, 10)
max2(5, 6, 7)
#相当于
args = (10, 5, 6, 7)
max(*args)
当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。
参考廖雪峰的官方网站

被折叠的 条评论
为什么被折叠?



