相关性算法BM25的python实现

本文深入解析BM25算法的计算原理,包括词频、逆文档频率及TF值变换,并通过gensim库的BM25模型实现文本相似度计算。展示了中文分词、构建语料库、训练模型及计算相似性的完整流程。

计算原理

在这里插入图片描述

  • 第一项c(w,q)就是搜索q中词w的词频
  • 第三项是词w的逆文档频率,M是所有文本的个数,df(w)是出现词w的文本个数
  • 中间的第二项是关键,实质是词w的TF值的变换,c(w,d)是词w在文本d中的词频。首先是一个TF Transformation,目的是防止某个词的词频过大,经过下图中公式的约束,词频的上限为k+1,不会无限制的增长。例如,一个词在文本中的词频无论是50还是100,都说明文本与这个词有关,但相关度不可能是两倍关系。

优点

开源实现

snownlp
gensim_bm25
rank_bm25

实践

一般流程(对于中文)

  1. 构建corpus
    1.1. 构建停用词词表(可加入部分高频词)
    1.2. 分词
    1.3. 去除停用词
  2. 训练BM25模型
  3. 使用模型计算相似性

gensim的使用

from gensim.summarization import bm25


def test_gensim_bm25():
    corpus = [
    ['来', '问', '几', '个', '问题', '第1', '个', '就', '是', '60', '岁', '60', '岁', '的', '时候', '退休', '是', '时间', '到', '了', '一定', '要', '退休', '还是', '觉得', '应该', '差'
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值