30、健康与生活实用指南

健康与生活实用指南

1. 功能移动与日常活动

1.1 功能移动方式

功能移动涵盖多种方式,以下是一些常见的转移方式及其对应页码:
| 转移方式 | 页码 |
| — | — |
| 使用浴椅转移到浴缸(右腿先坐,左腿后) | 268 |
| 使用浴转移凳转移到浴缸(左侧) | 269 |
| 使用浴转移凳转移到浴缸(右侧) | 270 |
| 进出汽车转移 | 271 |
| 轮椅通过浴转移凳到浴缸(左侧) | 272 |
| 轮椅通过浴转移凳到浴缸(右侧) | 274 |
| 轮椅移动 | 276 |

1.2 截肢相关护理

对于下肢截肢者,有一系列护理和使用假肢的要点:
- 残肢护理 :关注残肢的日常护理,相关内容在页码 299。
- 穿戴假肢和袜子 :掌握正确的穿戴方法,参考页码 314。
- 设备护理 :包括假肢和袜子的保养,见页码 332。
- 幻肢痛 :了解幻肢痛相关知识,页码 389。
- 残肢定位 :正确的残肢定位方法,参考页码 393。

2. 心肺相关知识

2.1 活动指南与注意事项

心肺方面,不同情况有不同的活动指南和注意事项:
- 心脏手术后活动指南 :术后的活动安排,见页码 291。

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值