深度学习中的RNN、LSTM与联邦学习技术解析
1. RNN反向传播示例
在深度学习中,梯度消失和梯度爆炸是常见的问题,我们可以通过一个简单的示例来直观地观察这两种现象。以下是一个关于循环神经网络(RNN)反向传播的示例代码:
import numpy as np
(sigmoid, relu) = (lambda x: 1 / (1 + np.exp(-x)), lambda x: (x > 0).astype(float) * x)
weights = np.array([[1, 4], [4, 1]])
activation = sigmoid(np.array([1, 0.01]))
print("Sigmoid Activations")
activations = list()
for iter in range(10):
activation = sigmoid(activation.dot(weights))
activations.append(activation)
print(activation)
print("\nSigmoid Gradients")
gradient = np.ones_like(activation)
for activation in reversed(activations):
gradient = (activation * (1 - activation) * gradient)
gradient = gradient.dot(weights.transpose())
print(gradient)
print("Relu
超级会员免费看
订阅专栏 解锁全文
1012

被折叠的 条评论
为什么被折叠?



