start = time()
from keras.models import Sequential
from keras.layers import Dense, Dropout,Input
from keras.layers import Embedding
from keras.layers import Conv1D, GlobalAveragePooling1D, MaxPooling1D
from keras import layers
from keras.models import Model
# Parameters for denoising autoencoder
nb_visible = 120
nb_hidden = 64
batch_size = 16
# Build autoencoder model
input_img = Input(shape=(nb_visible,))
encoded = Dense(nb_hidden, activation='relu')(input_img)
decoded = Dense(nb_visible, activation='sigmoid')(encoded)
autoencoder = Model(input=input_img, output=decoded)
autoencoder.compile(loss='mean_squared_error',optimizer='adam',metrics=['mae'])
autoencoder.summary()
# Train
### 加一个early_stooping
import keras
early_stopping = keras.callbacks.EarlyStopping(
monitor='val_loss',
min_delta=0.0001,
patience=5,
verbose=0,
mode='auto'
)
autoencoder.fit(X_train_np, y_train_np, nb_epoch=50, batch_size=batch_size , shuffle=True,
callbacks = [early_stopping],verbose = 1,validation_data=(X_test_np, y_test_np))
# Evaluate
evaluation = autoencoder.evaluate(X_test_np, y_test_np, batch_size=batch_size , verbose=1)
print('val_loss: %.6f, val_mean_absolute_error: %.6f' % (evaluation[0], evaluation[1]))
end = time()
print('耗时:'+str((end-start)/60))
keras简单的去噪自编码器代码和各种类型自编码器代码
最新推荐文章于 2025-02-28 19:34:18 发布