基于Keras的MNIST数据处理与GAN模型构建
1. 引入依赖库
在本次实践中,我们将使用Keras深度学习库,它是一个高级神经网络API,可运行在TensorFlow、Theano或Cognitive Toolkit (CNTK)之上。同时,还会用到numpy、matplotlib、tensorflow和tqdm等包。以下是引入依赖库的代码:
import numpy as np
import random
import matplotlib.pyplot as plt
%matplotlib inline
from tqdm import tqdm
from keras.layers import Input, Conv2D
from keras.layers import AveragePooling2D, BatchNormalization
from keras.layers import UpSampling2D, Flatten, Activation
from keras.models import Model, Sequential
from keras.layers.core import Dense, Dropout
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import Adam
from keras import backend as k
from keras.datasets import mnist
# set seed for reproducibility
seed_val = 9000
超级会员免费看
订阅专栏 解锁全文
26

被折叠的 条评论
为什么被折叠?



