Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 36885 Accepted Submission(s): 16252
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.

Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2#include <stdio.h> #include <string.h> int hash[30]; int arr[100]; int n; int juge(int num) { int i; for(i=2;i<num;i++) if(num%i==0) return 0; return 1; } void DFS(int order,int index) { int i; arr[order]=index; hash[index]=1; if(order==n) { if(juge(arr[order]+arr[1])) { printf("1"); for(i=2;i<=n;i++) printf(" %d",arr[i]); printf("\n"); } return ; } for(i=1;i<=n;i++) { if(!hash[i]&&juge(arr[order]+i)) { DFS(order+1,i); hash[i]=0; } } return ; } int main() { int flag=1; while(~scanf("%d",&n)) { printf("Case %d:\n",flag++); DFS(1,1); printf("\n"); } return 0; }