特征维度远大于样本量时候的过拟合问题

为什么特征维度远大于样本量会导致过拟合?

维度灾难

当特征维度远大于样本量时,会出现所谓的"维度灾难"(curse of dimensionality)。在高维空间中,数据变得非常稀疏,模型有太多的"自由度"来拟合这些稀疏的数据点。

举个简单的例子:

想象你只有2个点,要用一条直线拟合 -> 永远能完美拟合
如果有3个点,用一条二次曲线 -> 也能完美拟合
如果有n个点,用n-1次多项式 -> 同样能完美拟合

在我的案例中:

特征维度是402,意味着模型有402个参数可以调整
而只有160个样本来约束这些参数
这就给了模型太多的"自由度"来记忆训练数据的细节,包括噪声

过拟合的数学解释

在线性回归中,当特征数量p大于样本量n时:

方程组 X β = y Xβ = y =y 变成欠定方程组
意味着存在无穷多个解能够使训练误差为零
模型会找到一个使训练误差最小的解,但这个解往往过度拟合了训练数据中的噪声

解决方案:

降维:如PCA,将402维降到比如20-30维
正则化:如L1、L2正则化,限制模型参数的大小
特征选择:选择最重要的频率点
增加训练样本:如果可能的话收集更多数据

一个经验法则是:样本量应该至少是特征维度的5-10倍,才能较好地训练模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值