上海计算机学会 2023年12月月赛 丙组T3 数轴旅行(裴蜀定理)

本文介绍了一道关于在数轴上移动的题目,利用裴蜀定理分析能否到达给定位置,关键在于判断目标距离是否能被所有移动步长的最大公约数整除。通过计算gcd值来确定解的存在性,给出的C++代码实现了解题方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第三题:T3数轴旅行

标签:裴蜀定理
题意:初始位置在 x = 0 x=0 x=0,要去 x = d x=d x=d的位置,给定 n n n个整数 a 1 , a 2 , a 3 . . . , a n a_1,a_2,a_3...,a_n a1,a2,a3...,an,表示每次可以往左移动 a i a_i ai个单位或者往右移动 a i a_i ai个单位,求最后能不到达 x = d x=d x=d的位置。
1 < = n < = 1 0 5 , 1 < = a i < = 1 0 9 , − 1 0 9 < = d < = 1 0 9 1<=n<=10^5,1<=a_i<=10^9,-10^9<=d<=10^9 1<=n<=105,1<=ai<=109,109<=d<=109
题解:经典裴蜀定理题,有兴趣的可以去看看证明,我这边直接说定理和结论。
裴蜀定理:对于 x x x y y y的二元一次不定方程 a x + b y = c ax+by=c ax+by=c,其有解的充要条件为 g c d ( a , b ) ∣ c gcd(a,b)|c gcd(a,b)c
g c d ( a , b ) ∣ c gcd(a,b)|c gcd(a,b)c这个数学表示为 c c c能被 g c d ( a , b ) gcd(a,b) gcd(a,b)整除)
由基础定理我们可以得到一个推论:
对于不定方程 x 1 y 1 + x 2 y 2 + . . . + x n y n = k x_1y_1+x_2y_2+...+x_ny_n=k x1y1+x2y2+...+xnyn=k ∀ y i ∈ Z \forall y_i \in \Z yiZ,其有解的充要条件为 gcd ⁡ { x i } ∣ k \gcd\{x_i\}\mid k gcd{xi}k
回到本题我们可以写出这个式子, y i y_i yi可以是 − 1 -1 1 1 1 1
a 1 y 1 + a 2 y 2 + . . . + a n y n = d a_1y1+a_2y_2+...+a_ny_n=d a1y1+a2y2+...+anyn=d
那么问题就转变成了 d d d能否被 [ 所有 a i a_i ai的最大公约数 ] 整除,能整除就有解,反之无解。
代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

ll gcd(ll a, ll b) {
    if (b == 0) return a;
    return gcd(b, a % b);
}

int main() {
    ll n, a, d, g = 0;
    cin >> n >> d;
    for (int i = 1; i <= n; i++) {
        cin >> a;
        g = gcd(g, a);
    }
    if (d % g == 0) cout << "Yes";
    else cout << "No";
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值