In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
For each test case, print the last four digits of Fn. If the last four digits of Fnare all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
0 9 999999999 1000000000 -1Sample Output
0 34 626 6875Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
题意:就是求 Fibonacci 数列的第n项的数;
思路:矩阵快速幂,最重要的就是构造式子,
如:在斐波那契数列之中
fi[i] = 1*fi[i-1]+1*fi[i-2]
fi[i-1] = 1*f[i-1] + 0*f[i-2];
即
所以
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll long long
#define mod 10000
struct node
{
ll a[2][2];
};
ll n;
node s_cheng(node tt,node kk)
{
int i,j,k;
node c;
c.a[0][0] = c.a[0][1] = c.a[1][0] = c.a[1][1] = 0;
for(i=0;i<2;i++)
for(j = 0;j<2;j++)
for(k = 0;k<2;k++)
c.a[i][j] = (c.a[i][j] + tt.a[i][k] * kk.a[k][j])%mod;
return c;
}
node jz_pow(node tt,ll n)
{
node res;
res.a[0][0] = res.a[1][1] = 1;
res.a[0][1] = res.a[1][0] = 0;
while(n)
{
if(n&1) res = s_cheng(res,tt);
n>>=1;
tt = s_cheng(tt,tt);
}
return res;
}
int main()
{
while(~scanf("%lld",&n)&&n!=-1)
{
if(n==0)
{
printf("0\n");
continue;
}
node tt,res;
tt.a[0][0] = tt.a[0][1] = tt.a[1][0] = 1;
tt.a[1][1] = 0;
res.a[0][0] = 1;
res.a[1][0] = 0;
tt = jz_pow(tt,n-1);
res = s_cheng(tt,res);
printf("%lld\n",res.a[0][0]);
}
return 0;
}