如果你还没听过MCP(Model Context Protocol,模型上下文协议),不能说明你落伍了,而是技术发展太快,程序员继续卷死自己吧。
MCP:Anthropic于2024年11月底提出,旨在统一大型语言模型(LLM)与外部数据源和工具之间的通信协议。
动眼看
图片来源于网络
图片来源于网络
图片来源于网络
说人话
MCP host:指以LLM为核心,希望通过MCP访问数据的应用程序,如Claude desktop、Cherry Studio、ChatWise等。
MCP Server:轻量级程度,每个server都通过标准化的MCP公开特地功能,如获取当天日期server、当天日期的农历server(这些功能LLM默认没有)。
MCP Client:与Server想对应 ,目前的应用场景基本上都是与host在一体,如上面动图展示。
MCP和tools:在MCP出现之前,LLM有一个tool的概念。MCP的出现就是为了统一协议,管你哪个LLM,只要符合MCP标准,大家都好干活,别每家大模型厂商搞的破烂玩意都要学一遍。
动手写
获取当前机器外网IP(脱裤子放屁)
from mcp.server.fastmcp import FastMCP
import httpx
server = FastMCP("ip-server")
@server.tool()
async def ip() -> str:
"""
Obtain the public IP address of the current machine.
Returns:
str: The result of the IP.
"""
async with httpx.AsyncClient() as client:
response = await client.get("https://api64.ipify.org?format=json")
if response.status_code != 200:
return "Error: Failed to get IP."
response = response.json()
return response["ip"]
if __name__ == "__main__":
server.run(transport="stdio")
从unsplash中获取图片
import os
from dataclasses import dataclass
from typing import Optional, List, Dict
import httpx
from dotenv import load_dotenv
from mcp.server.fastmcp import FastMCP
# Load environment variables
load_dotenv()
# Create an MCP server
mcp = FastMCP("Unsplash MCP Server")
@dataclass
class UnsplashPhoto:
id: str
description: Optional[str]
urls: Dict[str, str]
width: int
height: int
@mcp.tool()
async def search_photos(
query: str,
page: int = 1,
per_page: int = 10,
order_by: str = "relevant",
color: Optional[str] = None,
orientation: Optional[str] = None,
) -> List[UnsplashPhoto]:
"""
Search for Unsplash photos
Args:
query: Search keyword
page: Page number (1-based)
per_page: Results per page (1-30)
order_by: Sort method (relevant or latest)
color: Color filter (black_and_white, black, white, yellow, orange, red, purple, magenta, green, teal, blue)
orientation: Orientation filter (landscape, portrait, squarish)
Returns:
List[UnsplashPhoto]: List of search results containing photo objects with the following properties:
- id: Unique identifier for the photo
- description: Optional text description of the photo
- urls: Dictionary of available image URLs in different sizes
- width: Original image width in pixels
- height: Original image height in pixels
"""
access_key = os.getenv("UNSPLASH_ACCESS_KEY") # 换成你自己的access_key
if not access_key:
raise ValueError("Missing UNSPLASH_ACCESS_KEY environment variable")
params = {
"query": query,
"page": page,
"per_page": min(per_page, 30),
"order_by": order_by,
}
if color:
params["color"] = color
if orientation:
params["orientation"] = orientation
headers = {"Accept-Version": "v1", "Authorization": f"Client-ID {access_key}"}
try:
async with httpx.AsyncClient() as client:
response = await client.get(
"https://api.unsplash.com/search/photos", params=params, headers=headers
)
response.raise_for_status()
data = response.json()
return [
UnsplashPhoto(
id=photo["id"],
description=photo.get("description"),
urls=photo["urls"],
width=photo["width"],
height=photo["height"],
)
for photo in data["results"]
]
except httpx.HTTPStatusError as e:
print(f"HTTP error: {e.response.status_code} - {e.response.text}")
raise
except Exception as e:
print(f"Request error: {str(e)}")
raise
def test_main():
async def test_unsplash():
res = await search_photos("Tesla car")
print(res)
import asyncio # 添加: 导入asyncio模块
asyncio.run(test_unsplash()) # 添加: 使用asyncio.run来运行异步test函数
def main():
mcp.run(transport="stdio")
if __name__ == "__main__":
# 运行
# main()
# 测试功能
test_main()
代码改动自网络
动手用
1、下载Cherry Studio最新版(国内友好):Releases · CherryHQ/cherry-studio · GitHub
2、安装MCP本地运行环境:如何在 Cherry Studio 中使用 MCP | Vaayne's Tea House
3、下载MCP server(可选):GitHub - huangxinping/ip-mcp-server: A IP MCP server.
这里要特别说明一下:对于MCP来说,有stdio和sse两种模式(不懂没关系,后面你实测时会发现)。同时开源的MCP server,可能是用python写的,也可能是用node js写的,都能执行,看你有没有运行环境。
stdio:在本地(就是你自己的机器上)运行代码,在配置时可以直接拉取pypi上的,也可以直接执行你自己的代码,如下图。这句话现在不懂没关系,玩着玩着你就懂了。
sse:服务上运行代码,这就省去了你本机需要MCP server代码的麻烦。当然在企业中,这种模式更好,老板写的server,你用就完了,还想看到我的代码。
4、Cherry Studio中配置各种MCP server:
5、用起来
动手藏
Open-Source MCP servers | Glama
Smithery - Model Context Protocol Registry
动脑想
MCP的出现解决了目前混沌的状态,大模型厂商各家都有自己的小九九,在强大的社区的推动下,也许各大厂会主动去适应MCP生态。另外,MCP、Agnet、Tool,这三者之间其实边界没那么清晰,还是得需应用厂商自己想怎么结合进业务中。
不要总是想自己能做什么,而要去想用户需要什么。别活着让自己爽的世界中,活在让别人爽的波涛汹涌之中,才能发财。