动态流网格网络中的汇点定位问题
1. 引言
近年来,地震、海啸和飓风等自然灾害频发。在日本,《灾害管理基本法》的修订加速了疏散设施的建设,如海啸疏散塔和疏散建筑的设置。然而,在规划海啸、洪水和核电站事故等紧急大规模灾害的疏散计划时,交通拥堵导致的疏散时间延迟是一个重要问题。例如,在东日本大地震中,许多人因交通拥堵导致疏散延迟而丧生。
为解决这一问题,可应用由Ford和Fulkerson提出的动态流网络模型。该模型能处理人员或物体随时间的移动,从而制定定量考虑交通拥堵的疏散计划。动态流网络由有向图组成,其中源节点代表疏散人员的位置,汇节点代表疏散设施的位置。每个源节点有疏散人员数量的供应值,每个汇节点有可接纳疏散人员的最大数量的需求值。每条边有容量和传输时间,容量限制了单位时间内疏散人员进入边的速率,传输时间表示疏散人员穿越边所需的时间。
动态流网络中最基本的问题之一是最快转运问题,其目标是计算每个疏散人员到达一个汇节点的最短时间(即疏散完成时间),并找到实现该时间的最优疏散流。目前,针对最快转运问题已开发了几种强多项式时间算法。
给定一个没有汇节点的动态流网络,一旦在某些节点或边上定位汇节点,该汇节点位置的疏散完成时间就确定了。我们考虑的问题是定位汇节点以最小化疏散完成时间,即汇点定位问题。目前,仅针对有限的网络(如路径、循环和树)给出了该问题的多项式时间算法,对于更复杂的网络类,尚无已知的多项式时间算法。本文将解决网格网络中的汇点定位问题,网格网络由于包含多个循环,能比之前研究的网络更好地模拟实际道路网络。我们提出了第一个针对具有均匀边容量和传输时间的动态流网格网络中1 - 汇点定位问题的多项式时间算法。
超级会员免费看
订阅专栏 解锁全文
39

被折叠的 条评论
为什么被折叠?



