BP神经网络主要用于预测和分类,对于大样本的数据,BP神经网络的预测效果较佳,BP神经网络包括输入层、输出层和隐含层三层,通过划分训练集和测试集可以完成模型的训练和预测,由于其简单的结构,可调整的参数多,训练算法也多,而且可操作性好,BP神经网络获得了非常广泛的应用,但是也存在着一些缺陷,例如学习收敛速度太慢、不能保证收敛到全局最小点、网络结构不易确定。另外,网络结构、初始连接权值和阈值的选择对网络训练的影响很大,但是又无法准确获得,针对这些特点可以采用遗传算法或粒子群算法等对神经网络进行优化。
目录
一、pso+bp预测2022年勇士和凯尔特人夺冠情况
1.1、数据准备
训练集的输入数据和输出数据,如下一共36*14的数据,前面18行是勇士队的训练数据,其中前13列是输入,最后一列是输出。后面的18行是凯尔特人的训练数据,