csn231SettingUpTheDataAndTheModel

本文详细介绍深度学习模型的建立过程,包括数据预处理、权重初始化等关键步骤,并探讨了如何通过正则化、批量归一化等技术防止过拟合,最后介绍了几种常见的损失函数。
#####################
setting up the data and the model
Data Preprocessing
Weight Initilization
Batch Normalization
Regularization(L2/L1/Maxnorm/Dropout)
#######################
Loss functions
#######################
summary
#######################
Data Preprocessing
Method1
Mean subtraction
Normalization
Method2
PCA and Whitening
Common pitfall:
the mean must be computed only over the training data 
and then subtracted equally from all splits (train/val/test).
#######################
Weight Initialization
1.Small random numbers
2.Calibrating the variance with 1/sqt(n)
3.Sparse initialization
Initizaling the biases
Batch Normalization is in practice
#######################
How to prevent over-fitting
Regularization
L2 regularization
L1 regularization
Max norm constraints
Dropout
Theme of noise in forward pass
Bias regularization
Pre-layer regularization
########################
Loss Functions
when large number of classes 
Hiearchical sofmax
Attribute classification
Regression



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值