CS231nNeural Networks Part 1: Setting up the Architecture

本文探讨了神经网络的基本概念,包括生物神经元的模拟、常用激活函数(如Sigmoid、Tanh、ReLU等)及其特性,并介绍了神经网络架构的设计原则及如何避免过拟合等问题。
#########
1.Brain analogies
#############
2.Modeling one neruon
Biological motivation and connections
neruro synapses dendrites axopn 
activation function sigmoid fuction 
#############
3.Coarse model
commonly used activation functions
1.Sigmode function
2.Tanh
3.ReLU(r=Rectified Linear Unit)
4.Leaky Relu
5.Maxout
6.TLDR
Neural Network architectures
Layer-wise organization
1.Neural Networks as neurons in graphs
2.Naming conventions
3.Output layer
4.Sizing neural networks
the neural network can approximate any continuous function.
How to set number of layers and their sizes
problem overfitting :L2 regularization,dropout,input noise
generalization capbility
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值