Purohit K, Suin M, Rajagopalan A N, et al. Spatially-adaptive image restoration using distortion-guided networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 2309-2319.
实验效果图:

Rain-drop Removal

Shadow Removal
解决什么问题?
SPAIR结构
(1)A localization network that identifies degraded pixels.
(2) A restoration network that exploits knowledge from the localization network in filter and feature domain to selectively and adaptively restore degraded pixels

The architecture of SPAIR.
核心模块
1. Spatial Feature Modulator (SFM)
- Efficacy: SFM is to perform distortion-guided spatial-varying feature normalization.
- Process: Given the fused features and the predicted mask
, we calculate the modulated features
.
![]()
![]()
![]()
- Studies(Justin Johnson et al.2016) show the correspondence between
- Feature mean → global semantic information.
- Feature variance → local texture.
- SFM modulates features at M = 1 to match the feature statistics of features at M = 0.
2 Mask-guided Sparse Convolution (SC)
- Efficacy: Facilitates selective restoration of highly degraded regions, and simplifies the learning process.
- Process: Given the fused features and the predicted mask
, we calculate the sparse features
.

Actually, means that->
![]()
SPAIR是一种创新的网络设计,它解决了传统方法在图像修复中的局限性,这些方法通常对所有图像和像素应用相同的处理。SPAIR通过定位网络识别受损像素,并使用恢复网络进行动态调整,针对性地修复图像中困难区域。其核心包括Spatial Feature Modulator (SFM)和Mask-guided Sparse Convolution (SC)。SFM执行失真引导的空间变化特征归一化,而SC则促进对高度退化区域的选择性修复,简化学习过程。
4269

被折叠的 条评论
为什么被折叠?



