import pyautogui
import os
import base64
import httpx
import asyncio
import json
from tools import *
api_key=os.environ.get("OPENAI_API_KEY", None)
api_url=os.environ.get("OPENAI_API_URL", None)
model_name=os.environ.get("MODEL_NAME", None)
if api_key is None or api_url is None or model_name is None:
raise Exception("请设置环境变量 OPENAI_API_KEY、OPENAI_API_URL 和 MODEL_NAME。")
# 配置日志
async def send_to_llm(messages,tools:list =None)->tuple[str,list]:
# 发送 POST 请求
async with httpx.AsyncClient() as client:
response = await client.post(
f"{api_url}/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
},
json={
"model": model_name,
"messages": messages,
**({"tools": tools} if tools else {}),
"stream": True,
"temperature": 0.9 # 添加温度参数
},
timeout=None # 禁用超时以支持流式读取
)
# 检查响应状态码
if not response.is_success:
raise Exception(f"LLM服务器错误: {response.status_code} - {response.text}")
# 流式读取响应内容
role=""
full_response = ""
action_pairs = []
action_pair = {"name": "", "arguments": ""}
async for chunk in response.aiter_text():
lines = chunk.split("\n")
for line in lines:
if line.startswith("data: "):
if "[DONE]" in line:
continue
try:
data = json.loads(line[6:])
delta = data["choices"][0]["delta"]
# 更新角色信息
if delta.get("role"):
role = delta["role"]
# 更新内容
if delta.get("content"):
full_response += delta["content"]
# 处理工具调用
if delta.get("tool_calls"):
tool_call = delta["tool_calls"][0]["function"]
action_pair["arguments"] += tool_call["arguments"]
if tool_call.get("name"):
action_pair["name"] = tool_call["name"].strip()
# 如果参数完成,保存动作对
if "}" in action_pair["arguments"]:
action_pairs.append(action_pair)
action_pair = {"name": "", "arguments": ""}
except Exception as e:
print(f"Error parsing line: {line}, error: {e}")
if tools :
print("funcall模式,动作:", action_pairs)
print("-----------------------------------------------")
else : print(role,":",full_response)
return full_response, action_pairs
def get_imageToBase64()->str:
imagePath=os.path.join(os.path.expanduser('~'), '图片', 'screenshot.jpg')
# 获取屏幕的宽度和高度
screen_width, screen_height = pyautogui.size()
screenshot = pyautogui.screenshot(region=(60, 300, screen_width//2, screen_height-500))
screenshot.save(imagePath)
# 读取图片并转换为 Base64
with open(imagePath, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
return base64_image
def make_message( role: str,prompt: str, base64_image: str = None)->str:
"""
:param prompt: 用户输入的文本提示
:param base64_image: Base64 编码的图片数据(可选)
"""
# 构造消息内容
message = {
"role": role,
"content": [
{"type": "text", "text": prompt},
]
}
if base64_image:
message["content"].append(
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
)
return message
async def operation(act: str ,text: str):
try:
# 定义目标 URL
url = f"http://0.0.0.0:5878/{act}"
# 发送 POST 请求
async with httpx.AsyncClient() as client:
response = await client.post( url, json=json.loads(text) )
# 检查响应状态码
if not response.is_success:
raise Exception("网络响应失败")
else:
return response.content.decode('utf-8')
# 假设你想打印返回的消息
except Exception as error:
print(f"调用接口时出错: {error}")
async def main():
history = []
while True:
user_input=input("你:")
user_promt=make_message("user",user_input)
history.append(user_promt)
if_fuctioncall,_=await send_to_llm([make_message("user",f"[{user_input}],分析这句话有没有发任务或者指令给你,有回答true,没有回答false")] )
if 'true' in if_fuctioncall:
_,actions=await send_to_llm([make_message("user",user_input+"\n可选方法:\n"+"\n".join(map(str, freecad_tools)))],freecad_tools)
if actions:
for action in actions:
responce= await operation(action["name"], action["arguments"])
history.append(make_message("system",responce))
else:
history_prompt ="\n".join([f"{message['role']}: {message['content'][0]}" for message in history[10:]])
system_prompt=make_message("system",f"你是我的助手\n{history_prompt}")
llm_response,_=await send_to_llm([system_prompt,user_promt])
history.append(make_message("assistant",llm_response))
if __name__ == "__main__":
asyncio.run(main())
用httpx写openai agent llm流式对话
于 2025-03-27 18:23:53 首次发布