POJ 2398(二分点集)

本文介绍了一个涉及平面几何的算法挑战——玩具存储问题。任务要求计算矩形区域内被多个板块分割后,各区域包含特定数量玩具点的数量。文章详细阐述了输入输出格式、示例及实现代码,有助于理解算法细节。
Language:
Toy Storage
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 8137 Accepted: 3848

Description

在长方形 (x1,y1) (x2,y2) 中有n块板(保证与上下边相交),和m个点。
现给出板和点的位置,求拥有相同点数的区域数、
 
 

Input

多组数据.每组数据开头为 n m x1 y1 x2 y2. n (0 < n <= 5000) m (0 < m <= 5000). (x1,y1)为左上角坐标 , (x2,y2)为右下角坐标. 
接下来 n 行有2个数 Ui Li,表示第i块板为 (Ui,y1) (Li,y2). (保证两两不交).
接下来m 行为点的坐标 Xj Yj (保证不在板上)
数据以 0 结束.

Output

每组数据给出同点数的区域数
点数: 区域数
…(点数1→n,区域数为0不输出)

请按这个格式输出。
每组数据开头输出“Box”。 

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
 5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1

0: 2
1: 2
2: 2
3: 2
4: 2

Hint

落在长方形边上的点也算.

Source


基本同POJ 2318


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define MAXN (1000+10) //Board
#define MAXM (1000+10) //Toy
struct P
{
	double x,y;
	P(){}
	P(int _x,int _y):x(_x),y(_y){}
	friend istream& operator>>(istream& cin,P &a){cin>>a.x>>a.y;return cin;	}
}a[MAXM];
struct V
{
	double x,y;
	P s;
	V(){}
	V(P a,P b):x(b.x-a.x),y(b.y-a.y),s(a){}
	friend int operator*(const V a,const V b)
	{
		return a.x*b.y-a.y*b.x;
	}
}c[MAXN];
int n,m,x1,y1,x2,y2,f[MAXM];
int cmp(V a,V b)
{
	return a.s.x<b.s.x;
}
void binary(int L,int R,int l,int r)
{
	if (R-L==1)
	{
		f[r-l+1]++;
		return;
	}
	int i=l,j=r,m=(l+r)>>1;
	V &M=c[(L+R)>>1];
	do 
	{
		while (i<=r&&V(M.s,a[i])*M<0) i++;
		while (j>=l&&V(M.s,a[j])*M>0) j--;
		if (i<=j) {swap(a[i],a[j]);i++;j--;	}	
	}while (i<=j);

	i--;j++;
	binary(L,(L+R)>>1,l,i);
	binary((L+R)>>1,R,j,r);

}
int main()
{
//	freopen("poj2398.in","r",stdin);
	
	while (scanf("%d%d",&n,&m)==2)
	{
		cout<<"Box\n";
		memset(f,0,sizeof(f));
		cin>>x1>>y2>>x2>>y1;
		for (int i=1;i<=n;i++)
		{
			int u,l;
			cin>>u>>l;
			c[i]=V(P(l,y1),P(u,y2));
		}
		c[0]=V(P(x1,y1),P(x1,y2));c[n+1]=V(P(x2,y1),P(x2,y2));	
		sort(c+1,c+1+n,cmp);
		for (int i=1;i<=m;i++) cin>>a[i];
		binary(0,n+1,1,m);	
		for (int i=1;i<=m;i++)
			if (f[i]) cout<<i<<": "<<f[i]<<endl;
	}
	return 0;
}


内容概要:本文是一份针对2025年中国企业品牌传播环境撰写的《全网媒体发稿白皮书》,聚焦企业媒体发稿的策略制定、渠道选择与效果评估难题。通过分析当前企业面临的资源分散、内容同质、效果难量化等核心痛,系统性地介绍了新闻媒体、央媒、地方官媒和自媒体四大渠道的特与适用场景,并深度融合“传声港”AI驱动的新媒体平台能力,提出“策略+工具+落地”的一体化解决方案。白皮书详细阐述了传声港在资源整合、AI智能匹配、舆情监测、合规审核及全链路效果追踪方面的技术优势,构建了涵盖曝光、互动、转化与品牌影响力的多维评估体系,并通过快消、科技、零售等行业的实战案例验证其有效性。最后,提出了按企业发展阶段和营销节定制的媒体组合策略,强调本土化传播与政府关系协同的重要性,助力企业实现品牌声量与实际转化的双重增长。; 适合人群:企业市场部负责人、品牌方管理者、公关传播从业者及从事数字营销的相关人员,尤其适用于初创期至成熟期不同发展阶段的企业决策者。; 使用场景及目标:①帮助企业科学制定媒体发稿策略,优化预算分配;②解决渠道对接繁琐、投放不精准、效果不可衡量等问题;③指导企业在重大营销节(如春节、双11)开展高效传播;④提升品牌权威性、区域渗透力与危机应对能力; 阅读建议:建议结合自身企业所处阶段和发展目标,参考文中提供的“传声港服务组合”与“预算分配建议”进行策略匹配,同时重视AI工具在投放、监测与优化中的实际应用,定期复盘数据以实现持续迭代。
先展示下效果 https://pan.quark.cn/s/987bb7a43dd9 VeighNa - By Traders, For Traders, AI-Powered. Want to read this in english ? Go here VeighNa是一套基于Python的开源量化交易系统开发框架,在开源社区持续不断的贡献下一步步成长为多功能量化交易平台,自发布以来已经积累了众多来自金融机构或相关领域的用户,包括私募基金、证券公司、期货公司等。 在使用VeighNa进行次开发(策略、模块等)的过程中有任何疑问,请查看VeighNa项目文档,如果无法解决请前往官方社区论坛的【提问求助】板块寻求帮助,也欢迎在【经验分享】板块分享你的使用心得! 想要获取更多关于VeighNa的资讯信息? 请扫描下方维码添加小助手加入【VeighNa社区交流微信群】: AI-Powered VeighNa发布十周年之际正式推出4.0版本,重磅新增面向AI量化策略的vnpy.alpha模块,为专业量化交易员提供一站式多因子机器学习(ML)策略开发、投研和实盘交易解决方案: :bar_chart: dataset:因子特征工程 * 专为ML算法训练优化设计,支持高效批量特征计算与处理 * 内置丰富的因子特征表达式计算引擎,实现快速一键生成训练数据 * Alpha 158:源于微软Qlib项目的股票市场特征合,涵盖K线形态、价格趋势、时序波动等多维度量化因子 :bulb: model:预测模型训练 * 提供标准化的ML模型开发模板,大幅简化模型构建与训练流程 * 统一API接口设计,支持无缝切换不同算法进行性能对比测试 * 成多种主流机器学习算法: * Lass...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值