求G∑d|nC(n,d)mod(F−1)modF
lucas+中国剩余定理+费马小定理
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <functional>
#include <cstdlib>
#include <queue>
#include <stack>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=Pre[x];p;p=Next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=Next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (999911659)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
typedef long long ll;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int read()
{
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
const int m[10] = {2, 3, 4679, 35617};
int a[10] ={};
ll fact[4][50000];
class Math
{
public:
// ll gcd(ll a,ll b){if (!b) return a;return gcd(b,a%b);}
void gcd(ll a,ll b,ll &d,ll &x,ll &y) {
if (!b) {d=a,x=1,y=0; }
else {gcd(b,a%b,d,y,x); y-=x*(a/b); }
}
// n个方程 x=a[i](mod m[i]) (0<=i<n)
ll china(int n,int *a,const int *m) {
ll M=F-1,d,y,x=0,ans=0;
Rep(i,n) {
ll w=M/m[i];
gcd(w,m[i],d,x,y);
ans=(ans+(ll)x*w*a[i])%M;
}
return (ans+M)%M;
}
ll abs(ll x){if (x>=0) return x;return -x;}
ll exgcd(ll a,ll b,ll &x, ll &y)
{
if (!b) {x=1,y=0;return a;}
ll g=exgcd(b,a%b,x,y);
ll t=x;x=y;y=t-a/b*y;
return g;
}
ll pow2(ll a,ll b,ll p) //a^b mod p
{
if (b==0) return 1%p;
if (b==1) return a%p;
ll c=pow2(a,b/2,p)%p;
c=c*c%p;
if (b&1) c=c*a%p;
return c%p;
}
ll inv(ll a,ll p) { //gcd(a,p)=1
return pow2(a,p-2,p);
}
ll C(int i,ll n,ll k,ll p) {
if (n<k) return 0;
return fact[i][n]*inv(fact[i][n-k]*fact[i][k]%p,p)%p;
}
ll lucas(int i,ll n,ll k,ll p) {
ll ret=1;
while(n&&k) {
ret=ret*C(i,n%p,k%p,p)%p;
if (!ret) return 0;
n/=p,k/=p;
}
return ret;
}
void get_factor(vector<ll> &v,ll p) {
for(ll i=1;i*i<=p;i++) if (p%i==0) {
v.pb(i);
if (i*i<p) v.pb(p/i);
}
sort(v.begin(),v.end());
}
}S;
int main() {
ll n,g;
scanf("%lld%lld",&n,&g);
if (g==F) {
puts("0"); return 0;
}
Rep(i,4) {
fact[i][0]=1;
For(j,m[i]) fact[i][j]=fact[i][j-1]*j%m[i];
}
vector<ll> v;
S.get_factor(v,n);
int sz=SI(v);
MEM(a)
Rep(i,4) {
Rep(j,sz) {
(a[i]+=S.lucas(i,n,v[j],m[i]))%=m[i];
}
}
int ans=S.china(4,a,m);
printf("%d",S.pow2(g,ans, F));
return 0;
}