Problem A1: Snake Scales (Chapter 1)
#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i>0;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
For(j,m-1) cout<<a[i][j]<<' ';\
cout<<a[i][m]<<endl; \
}
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
int main()
{
freopen("snake_scales_chapter_1_input.txt","r",stdin);
freopen("a.out","w",stdout);
int T=read();
For(kcase,T) {
ll n=read();
vi a(n),b(n);
Rep(i,n) cin>>a[i];
printf("Case #%d: ",kcase);
int t=0;
Rep(i,n-1) gmax(t,abs(a[i]-a[i+1]))
cout<< t<<endl;
}
return 0;
}
Problem A2: Snake Scales (Chapter 2)
#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i>0;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
For(j,m-1) cout<<a[i][j]<<' ';\
cout<<a[i][m]<<endl; \
}
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
#define MAXN (501000)
int n;
vi a;
vi v[MAXN];
int tot=0;
bool vis[MAXN];
void dfs(int x,int fa) {
vis[x]=1;++tot;
for (auto u:v[x])
if (u!=fa && !vis[u]) {
dfs(u,x);
}
}
bool ck(int m ){
Rep(i,n-1) if(abs(a[i]-a[i+1])<=m){
v[i].pb(i+1);
v[i+1].pb(i);
}
Rep(i,n) if(a[i]<=m)v[n].pb(i);
Rep(i,n+1) vis[i]=0;
tot=0;dfs(n,-1);
// Rep(i,n+1) cout<<vis[i]<<" ";cout<<endl;
Rep(i,n+1) v[i].resize(0);
if(tot==n+1) return 1;
return 0;
}
int main()
{
freopen("snake_scales_chapter_2_input.txt","r",stdin);
freopen("a.out","w",stdout);
int T=read();
For(kcase,T) {
cin>>n;
a.resize(n);
Rep(i,n) cin>>a[i];
printf("Case #%d: ",kcase);
int t=0;
int l=0,r=1e9+10,ans=r;
while(l<=r) {
int m=(l+r)/2;
if(ck(m)) r=m-1,ans=m;else l=m+1;
}
cout<<ans<<endl;
}
return 0;
}
Problem B1: Final Product (Chapter 1)
#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i>0;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
For(j,m-1) cout<<a[i][j]<<' ';\
cout<<a[i][m]<<endl; \
}
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
#define MAXN (501000)
int n;
vi a;
int main()
{
freopen("final_product_chapter_1_input.txt","r",stdin);
freopen("B.out","w",stdout);
int T=read();
For(kcase,T) {
ll A,B;
cin>>n>>A>>B;
printf("Case #%d: ",kcase);
int t=0;
For(i,2*n-1) cout<<" "<<1;cout<<" "<<B<<endl;
}
return 0;
}
Problem B2: Final Product (Chapter 2)
#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i>0;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
For(j,m-1) cout<<a[i][j]<<' ';\
cout<<a[i][m]<<endl; \
}
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
typedef long long LL;
typedef long long ll;
const int maxp = 1e6 + 1, maxv = 25, maxc = (int)1e4 + 1;
int ptot, pr[maxp], d[maxp], cnt;
LL n, p[maxc];
LL mod_add(LL x, LL y, LL p) {
return (x += y) < p ? x : x - p;
}
LL mod_mul(LL x, LL y, LL p) {
LL ret = x * y - (LL)((long double)x * y / p + 0.5) * p;
return ret < 0 ? ret + p : ret;
}
LL mod_pow(LL x, LL k, LL p) {
LL ret = 1 % p;
for( ; k > 0; k >>= 1, x = mod_mul(x, x, p))
(k & 1) && (ret = mod_mul(ret, x, p));
return ret;
}
bool miller_rabin(LL n) {
if(n == 2) return 1;
if(n < 2 || !(n & 1))
return 0;
LL s = 0, r = n - 1;
for( ; !(r & 1); r >>= 1, ++s);
for(int i = 0; pr[i] < n && pr[i] < maxv; ++i) {
LL cur = mod_pow(pr[i], r, n), nxt;
for(int j = 0; j < s; ++j) {
nxt = mod_mul(cur, cur, n);
if(nxt == 1 && cur != 1 && cur != n - 1) return 0;
cur = nxt;
}
if(cur != 1) return 0;
}
return 1;
}
LL gcd(LL a, LL b) {
int ret = 0;
while(a) {
for( ; !(a & 1) && !(b & 1); ++ret, a >>= 1, b >>= 1);
for( ; !(a & 1); a >>= 1);
for( ; !(b & 1); b >>= 1);
if(a < b)
swap(a, b);
a -= b;
}
return b << ret;
}
LL pollard_rho(LL n) {
static LL seq[maxp];
while(1) {
LL x = rand() % n, y = x, c = rand() % n;
LL *px = seq, *py = seq, tim = 0, prd = 1;
while(1) {
*py++ = y = mod_add(mod_mul(y, y, n), c, n);
*py++ = y = mod_add(mod_mul(y, y, n), c, n);
if((x = *px++) == y) break;
LL tmp = prd;
prd = mod_mul(prd, abs(y - x), n);
if(!prd) return gcd(tmp, n);
if((++tim) == maxv) {
if((prd = gcd(prd, n)) > 1 && prd < n) return prd;
tim = 0;
}
}
if(tim && (prd = gcd(prd, n)) > 1 && prd < n) return prd;
}
}
void decompose(LL n) {
for(int i = 0; i < cnt; ++i)
if(n % p[i] == 0) {
p[cnt++] = p[i];
n /= p[i];
}
if(n < maxp) {
for( ; n > 1; p[cnt++] = d[n], n /= d[n]);
} else if(miller_rabin(n)) {
p[cnt++] = n;
} else {
LL fact = pollard_rho(n);
decompose(fact), decompose(n / fact);
}
} // prepare pr(prime) and d(minimal factor)
map<LL,int> h;
ll xs[3000];
ll xs2[3000];
vector<vector<LL> > table;
template<int MOD, int RT> struct mint {
static const int mod = MOD;
static constexpr mint rt() { return RT; } // primitive root for FFT
int v; explicit operator int() const { return v; } // explicit -> don't silently convert to int
mint():v(0) {}
mint(ll _v) { v = int((-MOD < _v && _v < MOD) ? _v : _v % MOD);
if (v < 0) v += MOD; }
bool operator==(const mint& o) const {
return v == o.v; }
friend bool operator!=(const mint& a, const mint& b) {
return !(a == b); }
friend bool operator<(const mint& a, const mint& b) {
return a.v < b.v; }
mint& operator+=(const mint& o) {
if ((v += o.v) >= MOD) v -= MOD;
return *this; }
mint& operator-=(const mint& o) {
if ((v -= o.v) < 0) v += MOD;
return *this; }
mint& operator*=(const mint& o) {
v = int((ll)v*o.v%MOD); return *this; }
mint& operator/=(const mint& o) { return (*this) *= inv(o); }
friend mint pow(mint a, ll p) {
mint ans = 1; assert(p >= 0);
for (; p; p /= 2, a *= a) if (p&1) ans *= a;
return ans; }
friend mint inv(const mint& a) { assert(a.v != 0);
return pow(a,MOD-2); }
mint operator-() const { return mint(-v); }
mint& operator++() { return *this += 1; }
mint& operator--() { return *this -= 1; }
friend mint operator+(mint a, const mint& b) { return a += b; }
friend mint operator-(mint a, const mint& b) { return a -= b; }
friend mint operator*(mint a, const mint& b) { return a *= b; }
friend mint operator/(mint a, const mint& b) { return a /= b; }
};
const int MOD=1e9+7;
using mi = mint<MOD,5>; // 5 is primitive root for both common mods
namespace simp {
vector<mi> fac,ifac,invn;
void check(int x) {
if (fac.empty()) {
fac={mi(1),mi(1)};
ifac={mi(1),mi(1)};
invn={mi(0),mi(1)};
}
while (SI(fac)<=x) {
int n=SI(fac),m=SI(fac)*2;
fac.resize(m);
ifac.resize(m);
invn.resize(m);
for (int i=n;i<m;i++) {
fac[i]=fac[i-1]*mi(i);
invn[i]=mi(MOD-MOD/i)*invn[MOD%i];
ifac[i]=ifac[i-1]*invn[i];
}
}
}
mi gfac(int x) {
assert(x>=0);
check(x); return fac[x];
}
mi ginv(int x) {
assert(x>0);
check(x); return invn[x];
}
mi gifac(int x) {
assert(x>=0);
check(x); return ifac[x];
}
mi binom(ll n,ll m) {
if (m < 0 || m > n) return mi(0);
m=min(m,n-m);
// if(n>1e6) {
mi t=1;
for(ll i=n-m+1;i<=n;i++) t*=i%F;
return t*gifac(m);
// }
return gfac(n)*gifac(m)*gifac(n - m);
}
}
map<ll,int> hh;
#define MAXN (5000000)
ll p1[MAXN],p2[MAXN],sz=0,N,A,B;
mi cal(ll n,ll a,ll b) {
// cerr<<n<<' '<<a<<' '<<b<<endl;
return simp::binom(n+a-1,n-1)*simp::binom(n+b-1,n-1);
}
mi allans=0,pt=1;
void dfs(map<ll,int>::iterator it,ll now,mi pt){
auto &[ta,tb]=*it;
if(it==hh.end()) {
// cerr<<now<<' '<<pt.v<<endl;
allans+=pt;
return;
}
auto it2=it;it2++;
Rep(i,tb+1) {
if(now>A) return;
// p1[sz]=i,p2[sz]=tb-i;
mi temp=cal(N,i,tb-i);
dfs(it2,now,pt*temp);
now*=ta;
}
}
int main()
{
freopen("final_product_chapter_2_input.txt","r",stdin);
freopen("B.out","w",stdout);
for(int i = 2; i < maxp; ++i) {
if(!d[i])
pr[ptot++] = d[i] = i;
for(int j = 0, k; (k = i * pr[j]) < maxp; ++j) {
d[k] = pr[j];
if(d[i] == pr[j])
break;
}
}
int m, mod = 1000000007;
int T=read();
For(kcase,T) {
allans=0;
cin>>N>>A>>B;
printf("Case #%d: ",kcase);
decompose(B);
sort(p, p + cnt);
// Rep(i,cnt) cout<<p[i]<<" ";cout<<endl;
hh.clear();
Rep(i,cnt) hh[p[i]]++;
auto it=hh.begin();
dfs(it,1,1);
cout<<allans.v<<endl;
cnt=0;
}
return 0;
}
Problem C: Narrowing Down
#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i>0;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
For(j,m-1) cout<<a[i][j]<<' ';\
cout<<a[i][m]<<endl; \
}
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
#define MAXN (1000000+10)
ll f[MAXN][35];
int main()
{
freopen("narrowing_down_input.txt","r",stdin);
freopen("D2.out","w",stdout);
int m=30;
int T=read();
For(kcase,T) {
ll n=read();
vector<ll> a(n+1,0),s(n+1,0);
For(i,n) cin>>a[i];
For(i,n) s[i]=a[i]^s[i-1];
ll ans=0;
For(i,n) ans+=(ll)i*(n-i+1);
map<ll,ll> h;
Rep(i,n+1) Rep(j,m) f[i][j]=0;
MEM(f)
Rep(i,n+1) {
if(h.find(s[i])!=h.end()) {
int now=h[s[i]]+1;
f[now][0]=i;
}
h[s[i]]=i;
}
For(i,n) {
if(!a[i]) f[i][0]=i;
}
printf("Case #%d: ",kcase);
For(j,m-1) {
For(i,n) {
int t=f[i][j-1]+1;
if(f[i][j-1]!=0 &&1<=t && t<=n )
f[i][j]=f[t][j-1];
}
}
ll pans=0;
For(i,n) {
int now=i;ll len=0;
RepD(j,m-1){
if(f[now][j]!=0) {
len+=1LL<<j;
now=f[now][j]+1;
}
}
pans+=(ll)len*(len+1)/2;
}
cout<<ans-pans<<endl;
}
return 0;
}
Problem D: Crash Course
一个括号序列,A每次拿走一个(括号结尾的前缀,B每次拿走1个)为首的后缀,轮流操作,无法操作者输,A先手。问谁赢。
如果一个序列是括号序列,且‘(’数量大于等于’)’,那么要么它是以‘(’结尾,要么有一个后缀是regular bracket sequence。如果它不是regular bracket sequence,那么先手必胜。
容易发现 regular bracket sequence 后手必胜。
如果先手一步操作后,能直接变成 regular bracket sequence 那么先手必胜,这里考虑取走整个串也可以。
如果先手一步操作后,无法变成 regular bracket sequence,那么此时可以确定所有后缀)的数量大等于(,那么对方下次操作以后一定能变成regular bracket sequence。
#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i>0;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
For(j,m-1) cout<<a[i][j]<<' ';\
cout<<a[i][m]<<endl; \
}
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
#define MAXN (1000000+10)
ll f[MAXN][35];
int main()
{
freopen("narrowing_down_input.txt","r",stdin);
freopen("D2.out","w",stdout);
int m=30;
int T=read();
For(kcase,T) {
ll n=read();
vector<ll> a(n+1,0),s(n+1,0);
For(i,n) cin>>a[i];
For(i,n) s[i]=a[i]^s[i-1];
ll ans=0;
For(i,n) ans+=(ll)i*(n-i+1);
map<ll,ll> h;
Rep(i,n+1) Rep(j,m) f[i][j]=0;
MEM(f)
Rep(i,n+1) {
if(h.find(s[i])!=h.end()) {
int now=h[s[i]]+1;
f[now][0]=i;
}
h[s[i]]=i;
}
For(i,n) {
if(!a[i]) f[i][0]=i;
}
printf("Case #%d: ",kcase);
For(j,m-1) {
For(i,n) {
int t=f[i][j-1]+1;
if(f[i][j-1]!=0 &&1<=t && t<=n )
f[i][j]=f[t][j-1];
}
}
ll pans=0;
For(i,n) {
int now=i;ll len=0;
RepD(j,m-1){
if(f[now][j]!=0) {
len+=1LL<<j;
now=f[now][j]+1;
}
}
pans+=(ll)len*(len+1)/2;
}
cout<<ans-pans<<endl;
}
return 0;
}
5822

被折叠的 条评论
为什么被折叠?



