LangChain系列:精通LangChain的合并文档链

LangChain的合并链旨在解决语言模型处理长文本时的上下文限制问题,包含Stuff、MapReduce、Refine和Rerank四种策略。Stuff链通过简单拼接文档块实现快速处理,适用于短文本但受限于模型token容量;MapReduce链采用分治思想,先独立处理各文档块再整合结果,适合超长或多文档场景,但计算成本较高;Refine链通过迭代优化逐步完善输出,适合逻辑连贯的长文本生成任务,但效率较低;Rerank链依赖排序算法筛选最优答案,提升结果相关性,但需额外模型支持。四者各具优势,实际应用中需结合文本长度、质量需求与资源条件灵活选择。

LangChain的合并链是为了解决语言模型在处理长文本或多文档时的上下文限制问题而设计的。由于大多数语言模型存在token长度限制,直接处理超长文本会导致信息截断或性能下降,合并链通过不同的策略对分割后的文档块进行有效整合,从而突破这一瓶颈。目前主要有四种核心合并链:Stuff、MapReduce、Refine和Rerank,每种策略针对不同的场景需求,具有独特的优缺点。
在这里插入图片描述

Stuff链

Stuff链是最直接的合并方式,其核心思想是将所有文档块简单拼接后一次性输入模型。这种链适用于文档总长度较短、且模型上下文窗口足够容纳的场景,例如快速汇总单篇短文或分析少量用户评论。
它的优势在于实现简单且计算成本低,仅需一次模型调用即可完成。然而,当文档总长度超过模型限制时,这种方法会直接失效。例如,在总结一篇2000字的文章时,若模型最大token数为4096,可直接使用Stuff链;但若文章长达1万字,则需改用其他策略。

在这里插入图片描述
下面是示例代码:

from langchain.document_loaders import UnstructuredFileLoader
from langchain.chains.summarize import load_summarize_chain

sm_loader = UnstructuredFileLoader("../data/muir_lake_tahoe_in_winter.txt")
small_doc = sm_loader.load
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值