大模型出道即巅峰,它广受欢迎并在很多领域中成为有力的工具,当然包括数据分析领域。你可能不确定如何把大模型整合到你的工作中,如帮助你用数据驱动决策。本文介绍一些思路带你在不同应用场景下使用数据分析提示词。当然不仅局限与ChatGPT,其他国内大模型也一样适用。
1. 大模型优势
传统数据分析需要一定数学基础和技术壁垒,结合大模型我们可以快速学习数据分析的概念、关键特性以及如何有效使用,当然我们也可以编程实现特定领域结合大模型的个性化数据分析应用,给自己产品增加有竞争力的功能。
大模型提供了通用的数据分析工具,没有太多技术背景的人可以通过提示词获得代码示例或统计解释,大模型可以帮助我们把原始数据转为可执行的商业洞察。在正式开始之前,我们需要了解一些基本步骤和原则。
- 处理数据
大模型能够快速处理原始数据并转换为结构化信息,远远快于传统的手动采用编码方式(如python+jupyter notebook),它可以分析长期趋势、异常检测,甚至用历史数据进行机器学习预测。
- 数据洞察
大模型可以智能总结数据点,帮助抽取传统方法可能忽略的有价值洞察。在理解上下文方面,比你想象的要好:它可以揭示模式、关系和趋势。
- NLP
大模型可以使用自然语言处理能力,这是现有数据分析工具或平台所没有的。它可以使用清晰易懂的方式进行交流,对数据科学场景来说,可以让非技术背景人员更好理解和接受。
用户可以使用口语作为提示词,当然需要多轮优化。针对特定场景需要进行定制,使它在不同领域成为有力工具,如医疗、金融以及体育等。