Codeforces 245H H Queries for Number of Palindromes(DP)

H. Queries for Number of Palindromes
time limit per test
5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You've got a string s = s1s2... s|s| of length |s|, consisting of lowercase English letters. There also are q queries, each query is described by two integers li, ri (1 ≤ li ≤ ri ≤ |s|). The answer to the query is the number of substrings of string s[li... ri], which are palindromes.

String s[l... r] = slsl + 1... sr (1 ≤ l ≤ r ≤ |s|) is a substring of string s = s1s2... s|s|.

String t is called a palindrome, if it reads the same from left to right and from right to left. Formally, if t = t1t2... t|t| = t|t|t|t| - 1... t1.

Input

The first line contains string s (1 ≤ |s| ≤ 5000). The second line contains a single integer q (1 ≤ q ≤ 106) — the number of queries. Next q lines contain the queries. The i-th of these lines contains two space-separated integers li, ri (1 ≤ li ≤ ri ≤ |s|) — the description of the i-th query.

It is guaranteed that the given string consists only of lowercase English letters.

Output

Print q integers — the answers to the queries. Print the answers in the order, in which the queries are given in the input. Separate the printed numbers by whitespaces.

Sample test(s)
Input
caaaba
5
1 1
1 4
2 3
4 6
4 5
Output
1
7
3
4
2
Note

Consider the fourth query in the first test case. String s[4... 6] = «aba». Its palindrome substrings are: «a», «b», «a», «aba».

 

思路:DP,用个二维布尔数组判断是否回文。在用个二维数组存最优值

         初始化,当只有一个字符时是回文,并且最优值是1

         状态方程:is_palin[j][j+i]=is_palin[j+1][j+i-1]&s[j]==s[j+i];
    dp[j][j+i]=dp[j+1][j+i]+dp[j][j+i-1]-dp[j+1][i+j-1]+is_palin[j][j+i];

 

#include<iostream>
#include<cstring>
using namespace std;
const int mm=5005;
char s[mm];
int dp[mm][mm];
bool is_palin[mm][mm];
int main()
{
  cin>>s;
  int len=strlen(s);
  memset(is_palin,0,sizeof(is_palin));
  memset(dp,0,sizeof(dp));
  for(int i=0;i<len;i++)
  {
    dp[i][i]=1;
    is_palin[i][i]=true;
    is_palin[i+1][i]=true;
  }
  for(int i=1;i<=len;i++)
  for(int j=0;j<=len-i;j++)
  {
    is_palin[j][j+i]=is_palin[j+1][j+i-1]&s[j]==s[j+i];
    dp[j][j+i]=dp[j+1][j+i]+dp[j][j+i-1]-dp[j+1][i+j-1]+is_palin[j][j+i];
  }
  int m,a,b;
  cin>>m;
  for(int i=0;i<m;i++)
  {
    cin>>a>>b;
    cout<<dp[a-1][b-1]<<"\n";
  }
}


 


区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值