3626: [LNOI2014]LCA (树链剖分+离线处理)

本文介绍了一个结合线段树和树状数组的数据结构实现,通过具体实例展示了如何利用这些高级数据结构解决复杂查询与更新问题。文中详细解释了算法流程,包括节点插入、深度优先搜索、树链剖分等关键步骤,并实现了高效的区间更新和查询操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;

inline int read() {
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9') {
        if (ch == '-')f = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x*f;
}
const int maxn = 50005, inf = 1000000000, mod = 201314;
int n, m, tot, cnt, place, son[maxn], deep[maxn], head[maxn], fa[maxn], belong[maxn], pl[maxn];

struct edge {
    int to, next;
} e[maxn];

struct que {
    int z, ans1, ans2;
} q[maxn];

struct data {
    int num, p;
    bool flag;
} a[maxn << 1];

struct seg {
    int l, r, sum, tag;
} tr[maxn << 2];

inline bool operator<(data a, data b) {
    return a.p < b.p;
}

inline void insert(int u, int v) {
    e[++cnt] = (edge){v, head[u]};
    head[u] = cnt;
}

inline void dfs1(int x) {
    son[x] = 1;
    for (int i = head[x]; i; i = e[i].next) {
        if (e[i].to == fa[x])continue;
        deep[e[i].to] = deep[x] + 1;
        fa[e[i].to] = x;
        dfs1(e[i].to);
        son[x] += son[e[i].to];
    }
}

inline void dfs2(int x, int chain) {
    pl[x] = ++place;
    belong[x] = chain;
    int k = n;
    for (int i = head[x]; i; i = e[i].next)
        if (e[i].to != fa[x] && son[e[i].to] > son[k])
            k = e[i].to;
    if (k != n)dfs2(e[k].to, chain);
    for (int i = head[x]; i; i = e[i].next)
        if (e[i].to != fa[x] && e[i].to != k)
            dfs2(e[i].to, e[i].to);
}

inline void pushdown(int k) {
    if (tr[k].l == tr[k].r || !tr[k].tag)return;
    int tag = tr[k].tag;
    tr[k].tag = 0;
    tr[k << 1].sum += (tr[k << 1].r - tr[k << 1].l + 1) * tag;
    tr[k << 1 | 1].sum += (tr[k << 1 | 1].r - tr[k << 1 | 1].l + 1) * tag;
    tr[k << 1].tag += tag;
    tr[k << 1 | 1].tag += tag;
}

inline void build(int k, int l, int r) {
    tr[k].l = l;
    tr[k].r = r;
    if (l == r)return;
    int mid = (l + r) >> 1;
    build(k << 1, l, mid);
    build(k << 1 | 1, mid + 1, r);
}

inline void update(int k, int x, int y) {
    pushdown(k);
    int l = tr[k].l, r = tr[k].r;
    if (x == l && y == r) {
        tr[k].tag++;
        tr[k].sum += r - l + 1;
        return;
    }
    int mid = (l + r) >> 1;
    if (y <= mid)update(k << 1, x, y);
    else if (x > mid)update(k << 1 | 1, x, y);
    else update(k << 1, x, mid), update(k << 1 | 1, mid + 1, y);
    tr[k].sum = tr[k << 1].sum + tr[k << 1 | 1].sum;
}

inline void solve_update(int x, int f) {
    while (belong[x] != belong[f]) {
        update(1, pl[belong[x]], pl[x]);
        x = fa[belong[x]];
    }
    update(1, pl[f], pl[x]);
}

inline int query(int k, int x, int y) {
    pushdown(k);
    int l = tr[k].l, r = tr[k].r;
    if (l == x && r == y)return tr[k].sum;
    int mid = (l + r) >> 1;
    if (y <= mid)return query(k << 1, x, y);
    else if (x > mid)return query(k << 1 | 1, x, y);
    else return query(k << 1, x, mid) + query(k << 1 | 1, mid + 1, y);
}

inline int solve_query(int x, int f) {
    int res = 0;
    while (belong[x] != belong[f]) {
        res += query(1, pl[belong[x]], pl[x]);
        res %= mod;
        x = fa[belong[x]];
    }
    res += query(1, pl[f], pl[x]);
    res %= mod;
    return res;
}

int main() {
    n = read();
    m = read();
    for (int i = 1; i < n; i++) {
        int x = read();
        insert(x, i);
    }
    for (int i = 1; i <= m; i++) {
        int l = read(), r = read();
        q[i].z = read();
        a[++tot].p = l - 1;
        a[tot].num = i;
        a[tot].flag = 0;
        a[++tot].p = r;
        a[tot].num = i;
        a[tot].flag = 1;
    }
    build(1, 1, n);
    sort(a + 1, a + tot + 1);
    dfs1(0);
    dfs2(0, 0);
    int now = -1;
    for (int i = 1; i <= tot; i++) {
        while (now < a[i].p)solve_update(++now, 0);
        int t = a[i].num;
        if (!a[i].flag)q[t].ans1 = solve_query(q[t].z, 0);
        else q[t].ans2 = solve_query(q[t].z, 0);
    }
    for (int i = 1; i <= m; i++)
        printf("%d\n", (q[i].ans2 - q[i].ans1 + mod) % mod);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值