VMM VIP’s on multiple buses

使用`define与常量提升VIP复用性
本文介绍了一种通过`define宏与实例常量结合使用的方法,以支持不同总线宽度的验证IP(VIP),实现跨驱动、监视器等组件的高度复用。该方法允许设置默认总线大小,并根据实际应用调整总线宽度,确保覆盖范围的有效性。
 

A better approach is one that was described by Janick in the “Size Does Matter” blog of using `define. Let’s expand on this and see how it works for reusable VIPs. Well, the first thing that comes to my mind is that a `define is a global namespace macro with a single value, whereas I am using my VIP with 2 different bus architectures. Therefore, the `define alone is not enough: you also need a local constant to be able to exclude unwanted bits when you have a VIP instantiated for various bus widths.

1. //default define values 

2. `define MAX_DATA_SIZE 16 

3. `define MAX_ADDR_SIZE 16

4. class pkt_c extends vmm_data; 

5. static vmm_log log = new(“Pkt”, “class”); 

6. //instance constant to control actual bus sizes 

7. const int addr_size;

8. logic [`MAX_ADDR_SIZE:0] addr; 

9. logic [`MAX_DATA_SIZE:0] data; 

10. // pass a_size as arg to coverage 

11. // ensuring valid coverage ranges. 

12. covergroup cg (int a_size); 

13. coverpoint addr 

14. {bins ad_bin[] = {[0:a_size]};} 

15. endgroup 

16. // sizes specialized at construction for pkts

17. // on buses less than MAX bus widths 

18. function new(int a_s=`MAX_ADDR_SIZE); 

19. addr_size = a_s; 

20. cg = new(addr_size); 

21. `vmm_note(log, $psprintf(“\nADDR_TYPE: “,$typename(addr), 

22. “\nDATA_TYPE: “,$typename(data), 

23. “\nMAX_BUS_SIZE: “, addr_size)); 

24. endfunction 


 

The code above allows for a default implementation and all the user needs to do is set the `MAX_ADDR_SIZE and `MAX_DATA_SIZE symbols and all the code will be fully reusable across drivers, monitors, subenv, SoC etc.

For situations where two VIP’s of differing bus architectures are used, the compiler symbols need to be set to the biggest bus architecture in the system; smaller bus-widths are set using addr_size. It is not necessary for addr_size variable to be an instance constant or set during construction. By using instance constants, this ensures the bus-widths are not changed at runtime by users. Having the value of addr_size set during construction gives the users the flexibility to setup the object as they want. For pseudo-static objects such as drivers, monitors, subenvs, masters, slaves, scoreboards etc you should check the construction of verification modules for your particular design architecture during the vmm_env::start phase.

N.B not shown above, but assumed, is that the addr_size variable would be used to ensure correct masking occurs when performing do_pack(), do_unpack() compare() etc.

Just to wrap up some loose ends…

I’m not totally discounting the merits of parameterized classes just insuring people look at all the options. For instance you could parameterize everything and then set the SIZE at the vmm_subenv level and map the SIZE parameters to all other objects. At some point you will want to monitor or scoreboard across different bus-widths and then the parameterized class casting will bite you, reducing you to manually mapping the members within the comparison objects. There is a time and place for everything, so probably need another blog showing merits and where to use parameterized classes.

The vmm_data class is not the only place you might need to know the size of the bus, the same `define & instance constant technique can be used throughout your VIP classes.

This blog does not discuss the pros and cons of putting coverage groups in your data object class. I merely used the covergroup in the data-object as a vehicle to demonstrate how you can make your classes more reusable. I think a separate blog about where best to put coverage will clarify the usage models.

All the code snippets can be run with VCS-2009.06 & VMM1.1. Contact me for more complete code examples and bugs or issues you find.

内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值