tensorflow变量初始化

本文详细介绍了TensorFlow中变量初始化的各种方法,包括tf.get_variable及其常用初始化器如tf.constant_initializer、tf.random_normal_initializer等,同时也列举了基本的变量初始化方式如tf.ones、tf.zeros等。

tf.get_variable的初始化调用为:
tf.get_variable(name, shape=None, initializer=None, dtype=tf.float32, trainable=True, collections=None)

变量初始化的方法

tf.constant_initializer(const):常量初始化函数
tf.random_normal_initializer():正态分布初始化函数
tf.truncated_normal_initializer(mean = 0.0, stddev = 1.0, seed = None, dtype = dtypes.float32):截取的正态分布初始化函数
tf.random_uniform_initializer(minval = 0, maxval = None, seed = None, dtype = dtypes.float32):均匀分布初始化函数
tf.zeros_initializer():全0常量初始化函数
tf.ones_initializer():全1常量初始化函数
tf.uniform_unit_scaling_initializer(factor = 1.0, seed = None, dtype = dtypes.float32):均匀分布(不指定最小、最大值),初始化函数
tf.variance_scaling_initializer(scale = 1.0, mode = "fan_in", distribution = "normal", seed = None, dtype = dtypes.float32):由mode确定是截取的正态分布,还是均匀分布初始化函数
tf.orthogonal_initializer():正交矩阵初始化函数
tf.glorot_uniform_initializer():由输入单元节点数和输出单元节点数确定的均匀分布初始化函数
tf.glorot_normal_initializer():由输入单元节点数和输出单元节点数确定的截取的正态分布初始化函数

基本的变量初始化为:

tf.ones(shape, dtype = tf.float32, name = None)
tf.zeros(shape, dtype = tf.float32, name = None)
tf.ones_like(tensor, dtype = None, name = None)
tf.zeros_like(tensor, dtype = None, name = None)
tf.fill(dim, value, name = None)
tf.constant(value, dtype = None, shape = None, name = None)
tf.linspace(start, stop, num, name = None)
tf.range(start, limit = None, delta = 1, name = None)
tf.random_normal(shape, mean = 0.0, stddev = 1.0, dtype = tf.float32, seed = None, name = None)
tf.truncated_normal(shape, mean = 0.0, stddev = 1.0, dtype = tf.float32, seed = None, name = None)
tf.random_uniform(shape, minval = 0, maxval = None, dtype = tf.float32, seed = None, name = None)
tf.random_shuffle(value, seed =None, name = None)
tf.set_random_seed(seed):设置产生随机数的种子



作者:Persistently
链接:https://www.jianshu.com/p/58c28a2fc4b1
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值