昇思MindSpore学习笔记6-02计算机视觉--ResNet50迁移学习

摘要:

        记录MindSpore AI框架使用ResNet50迁移学习方法对ImageNet狼狗图片分类的过程、步骤。包括环境准备、下载数据集、数据集加载、构建模型、固定特征训练、训练评估和模型预测等。

一、

迁移学习的方法

        在大数据集上训练得到预训练模型

        初始化网络权重参数

        固定特征提取器

        应用于特定任务

ImageNet数据集中的狼和狗图像进行分类。

二、环境准备

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore

输出:

Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: 

三、数据准备

1.下载数据集

ImageNet

        狼与狗每个分类

        120张训练图像

        30张验证图像

download接口

        下载数据集

        自动解压到当前目录下

from download import download
​
dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip"
​
download(dataset_url, "./datasets-Canidae", kind="zip", replace=True)

输出:

Creating data folder...
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip (11.3 MB)

file_sizes: 100%|███████████████████████████| 11.9M/11.9M [00:00<00:00, 140MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./datasets-Canidae
'./datasets-Canidae'

数据集目录结构:

datasets-Canidae/data/
└── Canidae
    ├── train
    │   ├── dogs
    │   └── wolves
    └── val
        ├── dogs
        └── wolves

2.加载数据集

mindspore.dataset.ImageFolderDataset接口

        加载数据集

        图像增强操作。

定义执行过程的输入参数:

batch_size = 18                             # 批量大小
image_size = 224                            # 训练图像空间大小
num_epochs = 5                             # 训练周期数
lr = 0.001                                  # 学习率
momentum = 0.9                              # 动量
workers = 4                                 # 并行线程个数

import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
​
# 数据集目录路径
data_path_train = "./datasets-Canidae/data/Canidae/train/"
data_path_val = "./datasets-Canidae/data/Canidae/val/"
​
# 创建训练数据集
​
def create_dataset_canidae(dataset_path, usage):
    """数据加载"""
    data_set = ds.ImageFolde
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

muren

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值