参考资料
http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741376.html
概念
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。
基本思想
在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。
若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。
而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。
用回溯法解题的一般步骤:
- 针对所给问题,确定问题的解空间: 首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。
- 确定结点的扩展搜索规则。
- 以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
算法框架
非递归
还没看懂,先不贴,稍后补
递归
int a[n];
backtracking(int i)
{
if(i>n)
输出结果; // 找到一个解
else
{
for(j = i; j <= n; j=j+1) // 枚举i所有可能的路径
{
if(fun(j)) // 满足限界函数和约束条件即子节点中可能有解
{
a[i] = j; // 进行进度标记
... // 其他操作
backtracking(i+1);
回溯前的清理工作(如a[i]置空值等);// 回溯
}
}
}
}