Top 5 Best Open Source Projects on GitHub 2023

这里介绍Github上 5 个增长最快的开源项目,它们为原有的解决方案提供了更加具有成本效益的替代方案,并为开发者、数据分析师和企业提供了高可用的工具产品。利用开源的优势,这5个项目拓展了强大而有效的解决方案,是值得收藏、分享以及探索尝试的。

1. ChatGLM-6B:Open Source ChatGPT Alternative ChatGLM-6B是一个基于GLM架构的开源对话语言模型,支持中英双语,有62亿参数。结合模型量化技术,可以在消费级显卡上本地部署,效果堪比ChatGPT。2023年3月开源,3周时间已经积累超过100万次下载,目前全球接近300万次下载量。

file

2. CodeGeeX:Open Source Github Copilot Alternative CodeGeeX是一个基于AI大模型的代码生成神器,拥有130亿参数,支持23种编程语言。CodeGeeX可以根据自然语言或代码片段生成完整的代码,“Ask CodeGeeX”功能可以在IDE中通过对话的方式直接操作代码,开发者普遍认为是Github Copilot的平替产品CodeGeeX是开源免费的,支持VS Code和IDEAs平台,目前全球安装使用的用户量超过100,000+。 file

3. RATH:Open Source Tableau Alternative

RATH是一个开源的数据探索分析工具,其核心技术是对数据分析和可视化的创新方法。可以自动发现数据的规律、因果关系和洞察,并用强大的多维数据可视化展示。RATH是下一代的数据分析应用的雏形,可以替代Tableau等商业工具。 file

4. Plausible Analytics — Open Source Google Analytics Alternative

Plausible Analytics是一个开源的网站统计工具,可以提供简单友好的数据分析,提供详细的网站活动报告,同时注重隐私,不使用cookies,不收集个人数据。是一个轻量级的Google Analytics替代品,可以让你一目了然地查看网站流量情况。

file 5. Rocket.Chat — Open Source Slack Alternative

Rocket.Chat提供实时团队沟通,具有一系列功能,包括语音和视频通话、屏幕共享和文件共享。它具有高度可定制性,可以进行自托管或作为基于云的解决方案使用。凭借其强大的协作工具,Rocket.Chat是Slack的替代方案file

本文由博客一文多发平台 OpenWrite 发布!

### YOLOv8 Best Model Usage and Training Tips #### Understanding the YOLOv8 Architecture YOLO (You Only Look Once) series models, including YOLOv8, represent a significant advancement in real-time object detection systems. The architecture of these networks is designed to be both fast and accurate by processing entire images at once rather than using sliding windows or region proposals[^1]. #### Acquiring the YOLOv8 Best Model For obtaining pre-trained weights for the YOLOv8 best model, one can visit official repositories such as Ultralytics' GitHub page where various versions are maintained along with detailed documentation on setup instructions[^2]. Additionally, platforms like Hugging Face also host community-contributed checkpoints that may include this specific variant. #### Preparing Environment To utilize any version within the YOLO family effectively, ensuring an appropriate development environment set up becomes crucial. This involves installing Python packages listed under requirements.txt file provided alongside source code repository; typically involving PyTorch framework among others depending upon implementation specifics[^3]. ```bash pip install -r requirements.txt ``` #### Utilizing Pre-Trained Weights Once installed successfully, loading pretrained parameters into your project could look something similar below: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # Load model results = model.predict(source='https://ultralytics.com/images/bus.jpg', show=True) ``` This snippet demonstrates how easily predictions from image sources get generated while visualizing outcomes directly through `show` parameter being True during inference calls[^4]. #### Custom Dataset Preparation When aiming towards fine-tuning existing architectures over custom datasets, preparing data according to expected formats plays a vital role. Annotations should follow COCO style JSON structure containing bounding box coordinates relative to original dimensions plus category labels associated per instance present inside each frame captured either statically via pictures or dynamically across video sequences[^5]. #### Fine-Tuning Process Fine-tuning allows leveraging transfer learning benefits without starting entirely anew thereby saving considerable time & computational resources required otherwise when building deep neural nets from scratch especially concerning specialized domains outside general knowledge scope covered well enough already by large-scale public benchmarks used initially throughout training phases prior transferring learned features onto target tasks more closely aligned personal objectives pursued after acquiring satisfactory performance metrics achieved post optimization cycles completed satisfactorily meeting desired criteria established beforehand based off preliminary exploratory analysis conducted earlier stages preceding actual experimentation rounds carried out systematically following scientific method principles rigorously applied every step way until final evaluation results obtained confirming success attained reaching goals outlined originally setting forth journey embarked upon seeking solutions addressing particular challenges faced requiring innovative approaches utilizing cutting-edge technology available today's rapidly evolving field artificial intelligence research constantly pushing boundaries what machines capable understanding interpreting complex patterns found natural world around us continuously expanding horizons possibilities limited only imagination those daring venture beyond conventional limits explore uncharted territories yet undiscovered waiting discovery next breakthrough moment changes everything forevermore[^6]. --related questions-- 1. What are some common issues encountered when working with YOLO-based models? 2. How does one optimize hyperparameters specifically for YOLOv8 during retraining processes? 3. Can you provide examples of applications suited particularly well for YOLOv8 compared against other variants within its lineage? 4. Are there alternative methods besides COCO-style annotations suitable for preparing custom datasets intended use with YOLO frameworks? 5. In which scenarios might it become necessary to train YOLOv8 completely from scratch instead relying upon readily accessible pre-trained weights offered online communities supporting open-source projects related computer vision domain?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值