from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression,SGDRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
#下载数据集,并切分数据集和测试集
data = load_boston()
x_train,x_test,y_train,y_test = train_test_split(data.data,data.target,test_size = 0.25)
#处理数据集,特征值 跟目标值 分别标准化处理,因为fit的标准不一样
std_x = StandardScaler()
x_train = std_x.fit_transform(x_train)
x_test = std_x.transform(x_test)
std_y =StandardScaler()
y_train = std_y.fit_transform(y_train.reshape(-1,1))
y_test = std_y.transform(y_test.reshape(-1,1))
print(x_train,x_test,y_train,y_test)
#线性回归,正规方程求解
lr = LinearRegression()
lr.fit(x_train,y_train)
print("打印回归系数",lr.coef_)
#预测价格
y_predict = lr.predict(x_test)
#将价格在转化成标准化之前的
y_predict = std_y.inverse_transform(y_predict)
print("预测价格为",y_predict)
print("真是的价格为",std_y.inverse_transform(y_test))
#注意,回归问题一般没有准确率与召回率,因为预测值与真是的值存在的误差不能用准确率或者召回率简单表示
#逻辑回归,梯度下降
sgd = SGDRegressor()
sgd.fit(x_train,y_train)
print(sgd.coef_)
yy_predict =sgd.predict(x_test)
yy_predict=std_y.inverse_transform(yy_predict)
print(yy_predict)
#查看两种方法的均方误差
print("正规方程结果的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_predict))
print("梯度下降结果的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),yy_predict))