杭电1098 数学问题

数学题,刚拿到手,无从下笔。

这个数学过程比较麻烦,我写了好久,所以如果你没有耐心看,请直接看最后两段,会告诉你怎么编程。

f(x)=5*x^13+13*x^5+k*a*x=x(5*x^12+13*x^4+k*a),这个函数的形式直接就是费马小定理的形式

费马小定理是数论中的一个重要定理,其内容为: 假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p) 假如p是质数,且a,p互质,那么 a的(p-1)次方除以p的余数恒等于1

对f(x)=x(5*x^12+13*x^4+k*a)用此定理分析:
(1)如果x是65的倍数,那么已经符合65整除f(x)
(2)如果x是5的倍数,只要5*x^12+13*x^4+k*a被13整除即可,去掉13的倍数13*x^4,也即5*x^12+k*a被13整除,由费马小定理,5与13互质,13是质数,所以x^(13-1)模13余1,所以5*x^12模13余5,要使5*x^12+k*a被13整除,k*a必须模13余8(k*a≡8(mod 13))
(3)如果x是13的倍数,类似(2),需要13*x^4+k*a被5整除,由费马小定理类似得到x^4模5余1,所以13*x^4模5余3,k*a必须模5余2(k*a≡8(mod 13))
(4)如果x不含5和13这两个因子,则需要5*x^12+13*x^4+k*a被65整除了,等价于既要被5整除,又要被13整除,就相当于以上(2)(3)两种情况的条件要同时满足,所以有
k*a≡2(mod 5) 并且 k*a≡8(mod 13)

以下是编程求解:

#include<iostream>
using namespace std;
int main()
{
 int k,i,flag;
 while(cin>>k)
 {
  for(i=1;i<66;i++)
  {
   if(i*k%13==8&&i*k%5==2) {flag=i;break;}
   else flag=0;
  }
  if(flag!=0)cout<<flag<<endl;
  else cout<<"no"<<endl;
 }
 return 0;
}

基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值