svm 中采用自动搜索参数的方式获得参数值(参数优化)2

本文介绍如何在OpenCV中使用SVM类的train_auto函数进行参数优化,包括设置参数网格、初始化参数等关键步骤,并提供了一段示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

opencv中SVM类是提供了优化参数值功能的,下面讲讲具体的做法。


要让svm自动优化参数,那么训练时就不能再用train函数了,而应该用train_auto函数。下面是train_auto的函数原型

C++: bool CvSVM:: train_auto (const Mat & trainData ,

const Mat & responses ,

const Mat & varIdx ,

const Mat & sampleIdx ,

CvSVMParams params ,

int k_fold=10 ,

CvParamGrid Cgrid=CvSVM::get_default_grid(CvSVM::C) ,

CvParamGrid gammaGrid=CvSVM::get_default_grid(CvSVM::GAMMA) ,

CvParamGrid pGrid=CvSVM::get_default_grid(CvSVM::P) ,

CvParamGrid nuGrid=CvSVM::get_default_grid(CvSVM::NU) ,

CvParamGrid coeffGrid=CvSVM::get_default_grid(CvSVM::COEF) ,

CvParamGrid degreeGrid=CvSVM::get_default_grid(CvSVM::DEGREE) ,

bool balanced=false

)

自动训练函数的使用说明:
这个方法根据CvSVMParams中的最佳参数C, gamma, p, nu, coef0, degree自动训练SVM模型。参数被认为是最佳的交叉验证,其测试集预估错误最小。如果没有需要优化的参数,相应的网格步骤应该被设置为小于或等于1的值。

例如,为了避免gamma的优化,设置gamma_grid.step = 0,gamma_grid.min_val, gamma_grid.max_val 为任意数值。所以params.gamma 由gamma得出。
最后,如果参数优化是必需的,但是相应的网格却不确定,你可能需要调用函数CvSVM::get_default_grid(),创建一个网格。例如,对于gamma,调用CvSVM::get_default_grid(CvSVM::GAMMA)。该函数为分类运行 (params.svm_type=CvSVM::C_SVC 或者 params.svm_type=CvSVM::NU_SVC) 和为回归运行 (params.svm_type=CvSVM::EPS_SVR 或者 params.svm_type=CvSVM::NU_SVR)效果一样好。如果params.svm_type=CvSVM::ONE_CLASS,没有优化,并指定执行一般的SVM。

参考IT修道者博文的文章,使用其如下代码


    
  1. CvSVMParams param;
  2. param.svm_type = CvSVM::EPS_SVR;
  3. param.kernel_type = CvSVM::RBF;
  4. param.C = 1; //给参数赋初始值
  5. param.p = 5e-3; //给参数赋初始值
  6. param.gamma = 0.01; //给参数赋初始值
  7. param.term_crit = cvTermCriteria(CV_TERMCRIT_EPS, 100, 5e-3);
  8. //对不用的参数step设为0
  9. CvParamGrid nuGrid = CvParamGrid(1,1,0.0);
  10. CvParamGrid coeffGrid = CvParamGrid(1,1,0.0);
  11. CvParamGrid degreeGrid = CvParamGrid(1,1,0.0);
  12. CvSVM regressor;
  13. regressor.train_auto(PCA_training,tr_label,NULL,NULL,param,
  14. 10,
  15. regressor.get_default_grid(CvSVM::C),
  16. regressor.get_default_grid(CvSVM::GAMMA),
  17. regressor.get_default_grid(CvSVM::P),
  18. nuGrid,
  19. coeffGrid,
  20. degreeGrid);
用上面的代码的就可以自动训练优化出参数了,最后想查看优化后的参数值可以使用CvSVMParams params_re = regressor.get_params()函数来获得各优化后的参数值。


    
  1. CvSVMParams params_re = regressor.get_params();
  2. regressor.save("training_srv.xml");
  3. float C = params_re.C;
  4. float P = params_re.p;
  5. float gamma = params_re.gamma;
  6. printf("\nParms: C = %f, P = %f,gamma = %f \n",C,P,gamma);
不过根据我的测试发现如下错误:
OpenCV Error: Assertion failed (sv_count != 0) in do_train, file /home/…/opencv-2.4.9/modules/ml/src/svm.cpp, line 1346

该问题在stack overflow中有人提出,不过没有解决方案。

我修改了一下


    
  1. CvParamGrid CvParamGrid_C(pow(2.0,-5), pow(2.0,15), pow(2.0,2));
  2. CvParamGrid CvParamGrid_gamma(pow(2.0,-15), pow(2.0,3), pow(2.0,2));
  3. if (!CvParamGrid_C.check() || !CvParamGrid_gamma.check())
  4. cout<<"The grid is NOT VALID."<<endl;
  5. CvSVMParams paramz;
  6. paramz.kernel_type = CvSVM::RBF;
  7. paramz.svm_type = CvSVM::C_SVC;
  8. paramz.term_crit = cvTermCriteria(CV_TERMCRIT_ITER,100,0.000001);
  9. svm.train_auto(trainingData, labels, Mat(), Mat(), paramz,10, CvParamGrid_C, CvParamGrid_gamma, CvSVM::get_default_grid(CvSVM::P), CvSVM::get_default_grid(CvSVM::NU), CvSVM::get_default_grid(CvSVM::COEF), CvSVM::get_default_grid(CvSVM::DEGREE), true);
  10. paramz = svm.get_params();
  11. cout<<"gamma:"<<paramz.gamma<<endl;
  12. cout<<"C:"<<paramz.C<<endl;
大家不妨尝试一下。

        </div>
            </div>
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值