import numpy as np
#产生正态分布的数据100组,中心点(0,0),其标准差σ为1
p=np.random.randn(100,2)
#将中心点移动到(3.5,3.5),作为正类
for i in range(100):
p[i][0]+=3.5
p[i][1]+=3.5
#产生正态分布的数据100组,中心点(0,0),其标准差σ为1,作为负类
f=np.random.randn(100,2)
import pandas as pd
#将np数组转换成dataframe
df_p=pd.DataFrame(p,columns=['x','y'])
#加上标签z,正类标签1
df_p['z']=1
#将np数组转换成dataframe
df_f=pd.DataFrame(f,columns=['x','y'])
#加上标签z,负类标签0
df_f['z']=0
#将正负类合并成一个dataframe
res = pd.concat([df_p, df_f], axis=0)
res.head(10)
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
x | y | z | |
---|---|---|---|
0 | 4.198390 | 2.360253 | 1 |
1 | 4.802608 | 4.237265 | 1 |
2 | 3.571716 | 4.246163 | 1 |
3 | 3.389474 | 2.777169 | 1 |
4 | 3.407080 | 2.969104 | 1 |
5 | 3.962996 | 4.118016 | 1 |
6 | 2.679486 | 1.483121 | 1 |
7 | 3.547707 | 3.448452 | 1 |
8 | 3.181810 | 4.744277 | 1 |
9 | 3.412752 | 3.591759 | 1 |
import matplotlib.pyplot as plt
#绘制出数据集的散点图
plt.scatter(res['x'], res['y'], c=res['z'],cmap=plt.cm.Paired)
plt.xlabel('x')
plt.ylabel('y')
plt.title('random data')
plt.show()
from sklearn.model_selection import train_test_split
#划分测试集
train_x,test_x,train_y,test_y=train_test_split(res[['x','y']],res[['z']],test_size=0.3,random_state=0)
len(train_x)
140
from sklearn.model_selection import GridSearchCV
from sklearn import svm
#构建参数网格
parameters =[{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
clf=GridSearchCV(estimator=svm.SVC(),param_grid=parameters,cv=5,n_jobs=-1,scoring='precision')
clf.fit(train_x,train_y)
e:\Anaconda3\lib\site-packages\sklearn\utils\validation.py:578: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
GridSearchCV(cv=5, error_score='raise',
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False),
fit_params=None, iid=True, n_jobs=-1,
param_grid=[{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}],
pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
scoring='precision', verbose=0)
clf.best_params_
{'C': 1, 'kernel': 'linear'}
print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print("Grid scores on development set:")
print()
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, clf.cv_results_['params']):
print("%0.3f (+/-%0.03f) for %r"
% (mean, std * 2, params))
print()
Best parameters set found on development set:
{'C': 1, 'kernel': 'linear'}
Grid scores on development set:
0.987 (+/-0.053) for {'C': 1, 'kernel': 'linear'}
0.987 (+/-0.053) for {'C': 10, 'kernel': 'linear'}
0.987 (+/-0.053) for {'C': 100, 'kernel': 'linear'}
0.987 (+/-0.053) for {'C': 1000, 'kernel': 'linear'}
from sklearn.metrics import classification_report
print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
print(classification_report(test_y, clf.predict(test_x)))
print()
Detailed classification report:
The model is trained on the full development set.
The scores are computed on the full evaluation set.
precision recall f1-score support
0 1.00 1.00 1.00 31
1 1.00 1.00 1.00 29
avg / total 1.00 1.00 1.00 60