import torch
x_data =[1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w = torch. Tensor([1.0])
w.requires_grad = True
def forward(x) :
return x * w
def loss (x,y):
y_pred = forward (x)
return (y_pred-y)** 2
print ('predict (before training)',4,forward(4).item())
for epoch in range(100):
for x,y in zip(x_data, y_data):
l = loss(x,y)
l. backward()
print('\tgrad:',x,y,w. grad.item())
w.data = w.data -0.01 * w.grad.data
w.grad.data.zero_()
print(" progress:",epoch,l.item())
print(" predict (after training)",4,forward(4).item())