题目:在一个平面上有很多点,其中一些点已经被直线段连接,现在要把所有点连成一个整体,
要求新加入的直线段长度和最小。
分析:最小生成树。这里使用kruskal算法,先把一直线段的集合合并(并查集),然后在计算即可。
说明:╮(╯▽╰)╭。
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
int smap[755][755];
typedef struct p_node
{
int x,y;
}point;
point p[755];
int dist(point a, point b)
{
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
typedef struct d_node
{
int point1;
int point2;
int weight;
}enode;
enode edge[565000];
//union_set
int sets[755];
int rank[755];
void set_inital(int a, int b)
{
for (int i = a; i <= b; ++ i) {
rank[i] = 0;
sets[i] = i;
}
}
int set_find(int a)
{
if (a != sets[a])
sets[a] = set_find(sets[a]);
return sets[a];
}
void set_union(int a, int b)
{
if (rank[a] < rank[b])
sets[a] = b;
else {
if (rank[a] == rank[b])
rank[a] ++;
sets[b] = a;
}
}
//end_union_set
int cmp_e(enode a, enode b)
{
return a.weight < b.weight;
}
void kruskal(int n)
{
set_inital(1, n);
int r = 0,uni = 0;
for (int i = 1; i <= n; ++ i)
for (int j = 1; j < i; ++ j)
if (!smap[i][j]) {
edge[r].point1 = j;
edge[r].point2 = i;
edge[r].weight = dist(p[i], p[j]);
r ++;
}else {
int A = set_find(i);
int B = set_find(j);
if (A != B) {
set_union(A, B);
uni ++;
}
}
if (uni+1 == n) {
printf("No new highways need\n");
return;
}
sort(edge, edge+r, cmp_e);
int add = 0;
for (int i = 0; i < r; ++ i) {
int A = set_find(edge[i].point1);
int B = set_find(edge[i].point2);
if (A != B) {
set_union(A, B);
printf("%d %d\n",edge[i].point1,edge[i].point2);
if (uni++ == n-1) {
printf("No new highways need\n");
return;
}
}
}
}
int main()
{
int t,n,m,a,b;
while (scanf("%d",&t) != EOF)
while (t --) {
scanf("%d",&n);
for (int i = 1 ; i <= n; ++ i)
scanf("%d%d",&p[i].x,&p[i].y);
scanf("%d",&m);
memset(smap, 0, sizeof(smap) );
for (int i = 1 ; i <= m; ++ i) {
scanf("%d%d",&a,&b);
smap[a][b] = smap[b][a] = 1;
}
kruskal(n);
if (t) printf("\n");
}
return 0;
}