知识推理——CNN模型总结(一)

记录一下我看过的利用CNN实现知识推理的论文。

最后修改时间:2023.05.12

目录

1.ConvE

1.1.解决的问题

1.2.优势

1.3.贡献与创新点

1.4.方法

1.4.1 为什么用二维卷积,而不是一维卷积?

1.4.2.ConvE具体实现

1.4.3.1-N scoring

1.5.实验

1.5.1.数据集

1.5.2.实验设置

1.5.3.Inverse Model

1.6.实验结果

1.6.1.去不去除inverse relations

1.6.2.模型效率

 1.6.3.消融实验

1.6.4.Indegree和PageRank分析

 1.7.总结与感想

2.ConvKB

2.1.解决的问题

2.2.优势

2.3.贡献与创新点

2.4.方法

2.4.1方法介绍

 2.4.2.ConvKB与TransE的转换推导

2.5.实验

2.5.1.数据集

 2.5.2.实验细节

2.6.实验结果

2.7.总结与感想


1.ConvE

论文:Convolutional 2D Knowledge Graph Embeddings

会议/期刊:2018 AAAI

1.1.解决的问题

(1)以往的模型都太浅了,虽然可以快速用于大型数据集,但是学到的特征表达能力比较差;

(2)另一个比较严重的问题是数据集的泄露问题“test set leakage”,也就是训练集出现过的关系三元组,取了反后,在测试集中又出现了一遍。比如,(A,妈妈,B)在训练集中出现过,(B,女儿,A)又在测试集中出现。这个问题导致一些很简单的rule-based模型也可以达到很好的效果。

1.2.优势

(1)采用多层神经网络,特征表达能力强;

(2)参数量很少,相同的实验效果,参数量比DistMult少8倍,比R-GCN少17倍;

(3)可以高效建模大型数据集常出现的入度高的节点。

1.3.贡献与创新点

(1)设计2D卷积模型,进行链接预测;

(2)设计1-N scoring步骤,提升训练和评估的速度;

(3)参数量少;

(4)随着知识图谱复杂性的提升,ConvE与一些shallow算法的差距成比例增大;

(5)分析了各数据集泄露的问题,并提出了不泄露的版本;

(6)sota。

1.4.方法

1.4.1 为什么用二维卷积,而不是一维卷积?

       NLP任务中大多采用的是一维卷积,包括下面要提到的ConvKB算法,但是ConvE却创新的使用了二维卷积。因为二维卷积使得嵌入向量间的交互点变多了,模型的表达能力变强。举个栗子~

一维卷积:

两个一维嵌入分别为[a \quad a \quad a][b \quad b \quad b],两个嵌入concat后得到向量[a \quad a \quad a \quad b \quad b \quad b]

一维卷积核大小为3,那么卷积的过程中,两个向量只有连接点处的值(比如[a \quad b \quad b][a \quad a \quad b])发生了交互,并且交互程度会随着卷积核大小的增加而变深。

二维卷积:

两个二维嵌入分别为\begin{bmatrix} a& a & a\\ a& a& a \end{bmatrix}\begin{bmatrix} b & b & b\\ b & b & b \end{bmatrix},两个嵌入concat后得到嵌入\begin{bmatrix} a & a & a\\ a & a & a\\ b& b &b \\ b& b & b \end{bmatrix}

二维卷积核大小为3×3,卷积的过程中,卷积核可以建模concat边界线处的交互,特征交互更多。

换一个模式(将嵌入的几行调换一下位置),得到\begin{bmatrix} a & a & a\\ b & b & b\\ a& a &a \\ b& b & b \end{bmatrix},那么可以发现交互的点更多了。

1.4.2.ConvE具体实现

        链接预测算法一般由编码模块打分模块构成,编码模块负责得到实体和关系的嵌入向量,打分模块负责为三元组打分。

        ConvE由卷积层全连接层构成。

下面是ConvE的算法流程图

步骤:(可结合上图食用~)

(1)在所有的实体和关系的嵌入矩阵中,查找当前计算的实体和关系的嵌入向量e_{s}r_{r}

(2)对嵌入向量做2D的reshape,得到嵌入矩阵\bar{e_{s}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值