Fourier 乘子 (Hörmander - Mihlin 乘子定理)

本文深入探讨了卷积算子的收敛性质和范数估计,揭示了其与平移不变算子的等价性。通过傅里叶变换引入傅里叶乘子的概念,提供了一种研究卷积算子的新途径。

今天看到了这方面内容的描述,讲的比较好记录下来:https://zhuanlan.zhihu.com/p/111623179

摘取其中的一段:

1.Multipliers

 

In this section, we keep talk about the convergence property and norm estimate of convolution operator. In last section, we know some convolution operator can not be defined as usual Lebesgue integral but a limit process called singular integral. The stimulation of studying the convolution operator is that the convolution operator is equivalent to translation invariant operator.

Suppose Tg=\int f\left ( x-y \right )g\left ( y \right )dy is a convolution operator. Then by Fourier transform, we have . The concept of multipliers give us another approach to study the convolution operator T:

Definition 6.0.1. Let . Given , we say that m is a (Fourier) multiplier for if the operator , initially defined in by the relation: 

satisfies the inequality 

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值