You've got array a[1], a[2], ..., a[n], consisting of n integers. Count the number of ways to split all the elements of the array into three contiguous parts so that the sum of elements in each part is the same.
More formally, you need to find the number of such pairs of indices
i, j (2 ≤ i ≤ j ≤ n - 1), that
.
The first line contains integer n (1 ≤ n ≤ 5·105), showing how many numbers are in the array. The second line contains n integers a[1], a[2], ..., a[n] (|a[i]| ≤ 109) — the elements of array a.
Print a single integer — the number of ways to split the array into three parts with the same sum.
5 1 2 3 0 3
2
4 0 1 -1 0
1
2 4 1
0
题目大意:
让你将序列分成三部分,使得每一部分的权值和相等,问一共有多少种处理方案。
思路:
首先我们处理出一个前缀和。
如果sum【n】不是3的倍数,那么显然无解。
如果可能有解,那么我们设定tmp=sum【n】/3;
接下来O(n)枚举找sum【i】==tmp*2的位子,那么此时output+=之前出现过的sum【i】==tmp的个数。
过程维护一下就好了。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<map>
using namespace std;
#define ll __int64
ll a[500050];
ll sum[500050];
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)scanf("%I64d",&a[i]);
for(int i=0;i<n;i++)
{
if(i==0)sum[i]=a[i];
else
sum[i]=sum[i-1]+a[i];
}
if(sum[n-1]%3==0)
{
ll output=0;
ll tmp=sum[n-1]/3;
map<ll,ll >s;
for(int i=0;i<n;i++)
{
if(i==0||i==n-1)
{
s[sum[i]]++;
continue;
}
else
{
if(sum[i]==tmp*2)
{
output+=s[tmp];
}
s[sum[i]]++;
}
}
printf("%I64d\n",output);
}
else printf("0\n");
}
}